
92

Achieving High-Performance the Functional Way

A Functional Pearl on Expressing High-Performance Optimizations as Rewrite Strategies

BASTIAN HAGEDORN, University of Münster, Germany

JOHANNES LENFERS, University of Münster, Germany

THOMAS KŒHLER, University of Glasgow, UK

XUEYING QIN, University of Glasgow, UK

SERGEI GORLATCH, University of Münster, Germany

MICHEL STEUWER, University of Glasgow, UK

Optimizing programs to run efficiently on modern parallel hardware is hard but crucial for many applications.

The predominantly used imperative languages - like C or OpenCL - force the programmer to intertwine the

code describing functionality and optimizations. This results in a portability nightmare that is particularly

problematic given the accelerating trend towards specialized hardware devices to further increase efficiency.

Many emerging DSLs used in performance demanding domains such as deep learning or high-performance

image processing attempt to simplify or even fully automate the optimization process. Using a high-level - often

functional - language, programmers focus on describing functionality in a declarative way. In some systems

such as Halide or TVM, a separate schedule specifies how the program should be optimized. Unfortunately,

these schedules are not written in well-defined programming languages. Instead, they are implemented as a

set of ad-hoc predefined APIs that the compiler writers have exposed.

In this functional pearl, we show how to employ functional programming techniques to solve this challenge

with elegance. We present two functional languages that work together - each addressing a separate concern.

RISE is a functional language for expressing computations using well known functional data-parallel patterns.

ELEVATE is a functional language for describing optimization strategies. A high-level RISE program is trans-

formed into a low-level form using optimization strategies written in ELEVATE. From the rewritten low-level

program high-performance parallel code is automatically generated. In contrast to existing high-performance

domain-specific systems with scheduling APIs, in our approach programmers are not restricted to a set of

built-in operations and optimizations but freely define their own computational patterns in RISE and optimiza-

tion strategies in ELEVATE in a composable and reusable way. We show how our holistic functional approach

achieves competitive performance with the state-of-the-art imperative systems Halide and TVM.

CCS Concepts: • Software and its engineering→ Functional languages; Compilers; • Theory of com-

putation→ Rewrite systems.

Additional Key Words and Phrases: Rewrite Rules, Optimization Strategies, Strategy Languages, ELEVATE

ACM Reference Format:

Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.

2020. Achieving High-Performance the Functional Way: A Functional Pearl on Expressing High-Performance

Optimizations as Rewrite Strategies. Proc. ACM Program. Lang. 4, ICFP, Article 92 (August 2020), 29 pages.

https://doi.org/10.1145/3408974

Authors’ addresses: Bastian Hagedorn, University of Münster, Germany, b.hagedorn@wwu.de; Johannes Lenfers, University

of Münster, Germany, j.le@wwu.de; Thomas Kœhler, University of Glasgow, UK, t.koehler.1@research.gla.ac.uk; Xueying

Qin, University of Glasgow, UK, 2335466q@student.gla.ac.uk; Sergei Gorlatch, University of Münster, Germany, gorlatch@

wwu.de; Michel Steuwer, University of Glasgow, UK, michel.steuwer@glasgow.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART92

https://doi.org/10.1145/3408974

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3408974

92:2 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 INTRODUCTION

The tremendous gains in performance and efficiency that computer hardware continues to make

are a vital driving force for innovation in computing. These improvements enables entire new

areas of computing, such as deep learning, to deliver applications unthinkable even just a few

years ago. Moore’s law and Denard’s scaling describe the exponential growth of transistor counts

leading to improved performance and the exponential growth in performance per watt, leading

to improved energy efficiency. Unfortunately, these laws are coming to an end, as observed in

the 2017 ACM Turing Lecture by Hennessy and Patterson [2019]. As a result, the performance

and energy efficiency gains no longer come for free for software developers. Programs have to be

optimized for an increasingly diverse set of hardware devices by exploiting many subtle details of

the computer architecture. Therefore, performance portability has emerged as a crucial concern

as software naturally outlives the faster cycle of hardware generations. The accelerating trend

towards specialized hardware, which offers extreme benefits for performance and energy efficiency

if the specially optimized software exploits it, emphasizes the need for performance portability.

The predominant imperative and low-level programming approaches such as C, CUDA, or

OpenCL force programmers to intertwine the code describing the program’s functional behavior

with optimization decisions. This entanglement makes them ś by design ś non performance

portable. As an alternative, higher-level domain-specific approaches have emerged that allow

programmers to declaratively describe the functional behavior without committing to a specific

implementation. Prominent examples of this approach are virtually all machine learning systems

such as TensorFlow [Abadi et al. 2015] or PyTorch [Paszke et al. 2017]. For these approaches, the

compilers and runtime systems are responsible for optimizing the computations expressed as data-

flow graphs. Programmers have limited control over the optimization process. Instead, large teams

of engineers at Google and Facebook provide fast implementations for the most common hardware

platforms, for TensorFlow including Google’s specialized TPU hardware. This labor-intensive

support of new hardware is currently only sustainable for the biggest companies ś and even they

struggle as highlighted by Barham and Isard [2019], two of the original authors of TensorFlow.

TVM by Chen et al. [2018] and Halide by Ragan-Kelley et al. [2018, 2013] are two imperative

state-of-the-art high-performance domain-specific code generators used in machine learning and

image processing. Both of these systems attempt to tackle the performance portability challenge

by separating the program into two parts: schedules and algorithms. A schedule describes the
optimizations to apply to an algorithm that defines the functional behavior of the computation.

Schedules are implemented using a set of predefined ad-hoc APIs that expose a fixed set of optimiza-

tion options. TVM’s and Halide’s authors describe these APIs as a scheduling language, but they
lack many desirable properties of a programming language. Most crucially, programmers are not

able to define their own abstractions. Even the composition of existing optimization primitives is

unintuitive in some cases due to the lack of precise semantics, and both compilers have default and

implicit behavior limiting experts’ control. All of these reasons make writing schedules significantly

harder than writing algorithms. Furthermore, for some desirable optimizations, it is not sufficient

to change the schedule, but programmers must redefine the algorithm itself ś violating the promise

of separating algorithm and schedule. To overcome the innovation obstacle of manually optimizing

for specialized hardware and for achieving automated performance portability, we will need to

rethink how we separate, describe, and apply optimizations in a more principled way.

What has the functional programming community to offer to solve this challenge? Encoding

program transformations as rewrite rules has been a long-established idea that emerged from

the functional community. Bird and de Moor [1997] studied an algebraic programming approach

where functional programs are rewritten by exploiting algebraic properties. The Glasgow Haskell

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:3

High-Performance Code

C
O
M
P
IL
E
R

Low-Level Program

Codegen

Rewriting

OpenMP

High-Level Program Optimization Strategy
RISE

RISE

Fig. 1. Overview of our holistic functional approach to achieving high-performance: Computations are

expressed as High-Level Programs written in the data-parallel language RISE. These programs are rewritten

following the instructions of an Optimization Strategy expressed in the strategy language ELEVATE. From the

rewritten Low-Level Programs that encode optimizations explicitly, High-Performance Code is generated.

Compiler allows the specification of rewrite rules for program optimizations [Peyton Jones et al.

2001]. More recently, Lift by Steuwer et al. [2015] encodes optimization and implementation

choices as rewrite rules for optimizing a high-level pattern-based data-parallel functional language

using an automated stochastic search method applying the rewrites. Rewrite based approaches,

such as Lift, have the advantage of being easily extensible towards new application domains (such

as stencils discussed by Hagedorn et al. [2018]) as well as supporting new hardware features (such

as specialized vector instructions which are encoded as new low-level patterns and introduced by a

rewrite rule described by Steuwer et al. [2016]). Unfortunately, these rewrite approaches are so far

limited in their practicality to deliver the high level of performance required in many real-world

applications and achieved by current imperative approaches.

In this paper, we describe a practical holistic functional approach to high-performance code

generation. We combine RISE, a data-parallel functional language for expressing computations, with

a functional strategy language, called ELEVATE. RISE provides well known functional data-parallel

patterns for expressing computations at a high level. ELEVATE enables programmers to define their

own abstractions for building optimization strategies in a composable and reusable way. We provide

a purely functional high-performance code generation solution that is practical and allows expert

programmers to precisely control optimizations. As we will see in our experimental results, our

approach provides competitive performance compared to the imperative state-of-the-art while

being built with and leveraging functional principles resulting in an elegant and composable design.

While the individual components of our approach are not necessary novel for the functional

community, we believe that our overall design demonstrates an interesting novel application of

functional-programming techniques for achieving high performance. RISE is inspired by functional

data-parallel languages such as Lift [Steuwer et al. 2015, 2017], Accelerate by Chakravarty et al.

[2011], and Futhark by Henriksen et al. [2017]. ELEVATE is inspired by strategy languages for rewrite
systems ś mainly unknown to the high-performance community ś such as Stratego by Visser

[2001a]. Kirchner [2015] provides a recent overview of the rewriting community’s research.

Figure 1 shows an overview of our approach showing the compilation flow from a high-level

program and an optimization strategy to high-performance code. In Section 2, we first motivate

the need for a more principled way to separate, describe, and apply optimizations. RISE and its

compilation is explained in Section 3.3 before we focus on ELEVATE (Section 4) and how optimization

strategies are expressed in it (Section 5). We present an experimental evaluation comparing with

TVM and Halide in Section 6. We finish with related work in Section 7 and a conclusion (Section 8).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:4 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 # Naive algorithm
2 k = tvm.reduce_axis((0, K), 'k')
3 A = tvm.placeholder((M, K), name='A')
4 B = tvm.placeholder((K, N), name='B')
5 C = tvm.compute((M, N),lambda x, y: tvm.sum(A[x, k] * B[k, y], axis=k),name='C')
6 # Default schedule
7 s = tvm.create_schedule(C.op)

Listing 1 Matrix matrix multiplication in TVM. Lines 2ś5 define the computation 𝐴 × 𝐵, line 7 instructs the

compiler to use the default schedule computing the output matrix sequentially in a row-major order.

1 # Optimized algorithm
2 k = tvm.reduce_axis((0, K), 'k')
3 A = tvm.placeholder((M, K), name='A')
4 B = tvm.placeholder((K, N), name='B')
5 pB = tvm.compute((N / 32, K, 32), lambda x, y, z: B[y, x * 32 + z], name='pB')
6 C = tvm.compute((M,N), lambda x,y:tvm.sum(A[x,k] * pB[y//32,k,tvm.indexmod(y,32)], axis=k),name='C')
7 # Parallel schedule
8 s = tvm.create_schedule(C.op)
9 CC = s.cache_write(C, 'global')
10 xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], 32, 32)
11 s[CC].compute_at(s[C], yo)
12 xc, yc = s[CC].op.axis
13 k, = s[CC].op.reduce_axis
14 ko, ki = s[CC].split(k, factor=4)
15 s[CC].reorder(ko, xc, ki, yc)
16 s[CC].unroll(ki)
17 s[CC].vectorize(yc)
18 s[C].parallel(xo)
19 x, y, z = s[pB].op.axis
20 s[pB].vectorize(z)
21 s[pB].parallel(x)

Listing 2 Optimized Matrix matrix multiplication in TVM. Lines 2ś6 define an optimized version of the

algorithm in Listing 1, the other lines define a schedule specifying the optimizations for targeting CPUs.

2 MOTIVATION AND BACKGROUND

We motivate the need for more principled optimizations with a closer look at TVM, the current

state-of-the-art in high-performance domain-specific compilation for machine learning. We then

argue for achieving high-performance code generation using well-known functional programming

techniques by separating computations and optimizations into two separate functional languages.

2.1 Scheduling Languages for High-Performance Code Generation

Halide by Ragan-Kelley et al. [2018] introduced into the domain of high-performance code genera-

tion the concept of decoupling a program into: the algorithm, describing the functional behavior,

and the schedule, specifying how the underlying compiler should optimize the program. It has been

designed to generate high-performance code for image processing pipelines [Ragan-Kelley et al.

2013] and has since inspired similar approaches such as TVM by Chen et al. [2018] in deep learning.

Listings 1 and 2 [TVM 2020] show two snippets of TVM Python code for generating matrix

multiplication implementations. Listing 1 shows a simple version. The lines 2ś5 define the matrix

multiplication computation: 𝐴 and 𝐵 are multiplied by performing the dot product for each coordi-

nate pair (𝑥,𝑦). The dot product is expressed as pairwise multiplications and reducing over the

reduction domain 𝑘 using the tvm.sum operator (line 5). Line 7 instructs the compiler to use the

default schedule which generates code to compute the output matrix sequentially.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:5

Modifications for Optimizing Performance. Listing 2 shows an optimized version of the same

computation. The schedule in lines 8ś21 specifies multiple program transformations including

tiling (line 10), vectorization (line 17), and loop unrolling (line 16) for optimizing the performance

on multi-core CPUs. However, in order to optimize the memory access pattern, the algorithm has

to be changed. In this example, a copy of the B matrix (pB) is introduced in line 5 (and used in

line 6) whose elements are reordered depending on the tile size. This optimization is not expressible

with scheduling primitives and, therefore, requires the modification of the algorithm ś clearly

violating the promise of separating algorithm and schedule. Even for optimizations that do not

require changing the algorithm, the separation between algorithm and schedule is blurred because

both share the same Python identifiers and must, therefore, live in the same scope. This unsharp

separation limits the reuse of schedules across algorithms.

The optimized parallel schedule uses eight built-in optimization primitives (cache_write, tile,
compute_at, split, reorder, unroll, vectorize, parallel). Scheduling primitives provide high-

level abstractions for typical program transformations aiming to optimize performance. Some are

specific for the hardware (like vectorize), some are generally useful algorithmic optimizations for

many applications (like tiling to increase data locality), and others are low-level optimizations

(like unroll and reorder that transform loop nests). However, TVM’s scheduling language is

not easily extensible. Adding a new optimization primitive to the existing schedule API requires

extending the underlying TVM compiler. Even a primitive like tile, which can be implemented as

a composition of split and reorder [Halide 2020], is provided as a built-in abstraction. Modern

scheduling languages are not extensible with user-defined abstractions.

The behavior of some primitives is not intuitive, and the documentation provides only informal

descriptions, e.g., for cache_write: łCreate a cache write of original tensor, before storing into tensorž.
Reasoning about schedules is difficult due to the lack of clear descriptions of optimization primitives.

If no schedule is provided (as in Listing 1), the TVM compiler employs a set of implicit default

optimizations that are out of reach for the user’s control. The implicit optimizations sometimes

lead to the surprising behavior that algorithms without a schedule perform better (e.g., due to

auto-vectorization) than ones where a programmer provides a schedule.

2.2 The Need for a Principled Way to Separate, Describe and Apply Optimizations

Out of the shortcomings of the scheduling API approach, we identify the following desirable features

for a more principled way to separate, describe, and apply optimizations for high-performance

code generation. Our holistic functional approach aims to:

(1) Separate concerns: Computations should be expressed at a high abstraction level only. They

should not be changed to express optimizations;

(2) Facilitate reuse: Optimization strategies should be defined clearly separated from the compu-

tational program facilitating reusability of computational programs and strategies;

(3) Enable composability: Computations and strategies should be written as compositions of

user-defined building blocks (possibly domain-specific ones); both languages should facilitate

the creation of higher-level abstractions;

(4) Allow reasoning: Computational patterns, but also especially strategies, should have a precise,

well-defined semantics allowing reasoning about them;

(5) Be explicit: Implicit default behavior should be avoided to empower users to be in control.

Fundamentally we argue that a more principled high-performance code generation approach should
be holistic by considering computation and optimization strategies equally important. As a consequence,
a strategy language should be built with the same standards as a language describing computation.

In this paper, we present such an approach combining the functional languages: RISE and ELEVATE.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:6 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 // Matrix Matrix Multiplication in RISE
2 val dot = fun(as, fun(bs,
3 zip(as)(bs) |> map(fun(ab, mult(fst(ab))(snd(ab)))) |> reduce(add)(0)))
4 val mm = fun(a : M.K.float, fun(b : K.N.float,
5 a |> map(fun(arow, // iterating over M
6 transpose(b) |> map(fun(bcol, // iterating over N
7 dot(arow)(bcol))))))) // iterating over K

1 // Optimization Strategy in ELEVATE
2 val tiledMM = (tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;‘ lowerToC)(mm)

Fig. 3. Matrix matrix multiplication in RISE (top) and the tiling optimization strategy in ELEVATE (bottom).

Figure 3 shows an example of a RISE program defining matrix multiplication computation as a

composition of well-known data-parallel functional patterns. Below is an ELEVATE strategy that

defines one possible optimization by applying the well-known tiling optimization that improves

memory usage by increasing spatial and temporal locality of the data. The optimization strategy is

defined as a sequential composition (‘;‘) of user-defined strategies that are themselves defined as

compositions of simple rewrite rules giving the strategy a precise semantics. We do not employ

implicit behavior and instead generate low-level code according to the optimization strategy.

In the remainder of the paper, we explore our holistic functional approach for achieving high-

performance. We describe how to define optimizations typically provided in high-performance

scheduling languages as optimization strategies in ELEVATE defined as compositions of simple rewrite

rules for data-parallel functional programs. We start by briefly introducing the computational

language RISE and its compilation to parallel imperative code.

3 RISE: A LANGUAGE FOR EXPRESSING DATA-PARALLEL COMPUTATIONS

In this section, we give a brief introduction of RISE (Section 3.1), how low-level patterns represent

hardware features (Section 3.2), and finally, how we generate imperative code (Section 3.3).

3.1 A Brief Introduction to RISE

RISE is a functional programming language that uses data-parallel patterns to express computations

over multi-dimensional arrays. RISE is a spiritual successor of Lift, which was initially introduced

by Steuwer et al. [2015]. Lift has demonstrated that functional, high-performance code generation

is feasible for different domains, including dense linear algebra, sparse linear algebra, and stencil

computations (see [Steuwer et al. 2017] and [Hagedorn et al. 2018]). RISE is implemented as a deep

embedded DSL in Scala and generates parallel OpenMP code for CPUs and OpenCL for GPUs.

Figure 4 shows the abstract syntax of RISE expressions and types, and the provided high-level and

low-level primitives for expressing data-parallel computations. RISE provides the usual 𝜆-calculus

constructs of abstraction (written fun(x, e)), application (written with parenthesis), identifiers, and

literals (underlined). The type system separates data types from function types to prevent functions

from being stored in memory. RISE uses a restricted form of dependent function types for types

that contain expressions of kind nat representing natural numbers or data for type-level variables
ranging over data types. Natural numbers are used to represent the length of arrays in the type and

might consist of arithmetic formulae with binary operations such as addition and multiplication.

Data types are array types, pair types, index types representing array indices up to 𝑛, scalar types,

or vector types that correspond directly to the SIMD vector types of the underlying hardware.

Atkey et al. [2017] give precise typing rules for such a type system.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:7

RISE Syntax of Expressions and Types:

𝑒 ::= fun(𝑥, 𝑒) |𝑒 (𝑒) |𝑥 |𝑙 |𝑃 (Abstraction, Application, Identifier, Literal, Primitives)

𝜅 ::= 𝑛𝑎𝑡 |𝑑𝑎𝑡𝑎 (Natural Number Kind, Datatype Kind)

𝜏 ::= 𝛿 |𝜏 → 𝜏 | (𝑥 : 𝜅) → 𝜏 (Data Type, Function Type, Dependent Function Type)

𝑛 ::= 0|𝑛 + 𝑛 |𝑛 · 𝑛 | . . . (Natural Number Literals, Binary Operations)

𝛿 ::= 𝑛.𝛿 |𝛿 × 𝛿 |𝑖𝑑𝑥 [𝑛] |float|𝑛<float> (Array Type, Pair Type, Index Type, Scalar Type, Vector Type)

High-Level Primitives:

id : (𝛿 : 𝑑𝑎𝑡𝑎) → 𝛿 → 𝛿

add | mult | . . . : (𝛿 : 𝑑𝑎𝑡𝑎) → 𝛿 → 𝛿 → 𝛿

fst : (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → 𝛿1 × 𝛿2 → 𝛿1
snd : (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → 𝛿1 × 𝛿2 → 𝛿2
map : (𝑛 : 𝑛𝑎𝑡) → (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → (𝛿1 → 𝛿2) → 𝑛.𝛿1 → 𝑛.𝛿2

reduce : (𝑛 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → (𝛿 → 𝛿 → 𝛿) → 𝛿 → 𝑛.𝛿 → 𝛿

zip : (𝑛 : 𝑛𝑎𝑡) → (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → 𝑛.𝛿1 → 𝑛.𝛿2 → 𝑛.(𝛿1 × 𝛿2)

split : (𝑛 𝑚 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → 𝑛𝑚.𝛿 → 𝑛.𝑚.𝛿

join : (𝑛 𝑚 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → 𝑛.𝑚.𝛿 → 𝑛𝑚.𝛿

transpose : (𝑛 𝑚 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → 𝑛.𝑚.𝛿 →𝑚.𝑛.𝛿

generate : (𝑛 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → (𝑖𝑑𝑥 [𝑛] → 𝛿) → 𝑛.𝛿

Low-Level Primitives:
map{Seq|SeqUnroll|Par} : (𝑛 : 𝑛𝑎𝑡) → (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → (𝛿1 → 𝛿2) → 𝑛.𝛿1 → 𝑛.𝛿2
reduce{Seq|SeqUnroll} : (𝑛 : 𝑛𝑎𝑡) → (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → (𝛿1 → 𝛿2 → 𝛿1) → 𝛿1 → 𝑛.𝛿2 → 𝛿1

toMem : (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → 𝛿1 → (𝛿1 → 𝛿2) → 𝛿2
mapVec : (𝑛 : 𝑛𝑎𝑡) → (𝛿1 𝛿2 : 𝑑𝑎𝑡𝑎) → (𝛿1 → 𝛿2) → 𝑛<𝛿1> → 𝑛<𝛿2>

asVector : (𝑛 𝑚 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → 𝑛𝑚.𝛿 → 𝑛.𝑚<𝛿>

asScalar : (𝑛 𝑚 : 𝑛𝑎𝑡) → (𝛿 : 𝑑𝑎𝑡𝑎) → 𝑛.𝑚<𝛿> → 𝑛𝑚.𝛿

Fig. 4. The syntax of expressions and types of RISE as well as high- and low-level primitives.

In the paper, we use the following syntactic sugar: we write reverse function application in the

style of F-sharp as e |> f (equivalent to f(e)); we write function composition like this g << f and
in the reverse form as f >> g, both meaning f is applied before g; we may write + and * as inline
binary operators instead of calling the equivalent functions add and mult.

RISE defines a set of high-level primitives that describe computations over multi-dimensional

arrays. These primitives are well-known in the functional programming community: id, fst, snd,
and the binary functions add and mult have their obvious meaning. map and reduce are the well-
known functions operating on arrays and allowing for easy parallelization. zip, split, join, and
transpose shape multi-dimensional array data in various ways. Finally, generate creates an array

based on a generating function. Since RISE does not support general recursion, every RISE program

terminates.

3.2 A Functional Representation of Hardware Features

More interesting are the low-level primitives that RISE offers to indicate how to exploit the un-

derlying hardware. Generally, programmers do not directly use these primitives; instead, they

are introduced by rewrite rules. The different map pattern variations indicate if the given function

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:8 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

is applied to the array using a sequential loop, by unrolling this loop, or using a parallel loop

where each iteration might be performed in parallel. Similarly, the reduce variations indicate if the
reduction loop should be unrolled or not. RISE does not provide a parallel reduction as a building

block because it is expressable using other low-level primitives such as mapPar. toMem(a)(fun(x, b))
indicates that the value a will be stored in memory and that the stored value is accessible in the ex-

pression b with the name x. The last three low-level patterns, mapVec, asVector, and asScalar, enable
the use of SIMD-style vectorization. The low-level primitives presented here are OpenMP-specific

for expressing parallelization on CPUs, a similar set of low-level primitives exists for targeting the

OpenCL programming language for GPUs.

3.3 Strategy Preserving Code Generation from RISE

The compilation of RISE programs is slightly unusual. A high-level program is rewritten using a

set of rewrite-rules into the low-level patterns. Steuwer et al. [2015] initially proposed this process

in Lift. From the low-level representation, we generate imperative parallel code. This design

leads to a clear separation of concerns ś one of the key aims that we set out for our approach.

All optimization decisions, such as how to parallelize the reduce primitive, must be made in the

rewriting stage before code generation. The code generation process becomes deterministic and

only translates the annotated implementation strategy into the target imperative language such as

OpenMP or OpenCL. Atkey et al. [2017] describe a compilation process that is guaranteed to be

strategy-preserving; meaning, the compiler makes no implicit implementation decisions. Instead,

the compiler respects the implementation and optimization decisions explicitly encoded in the

low-level RISE program.

Lift promises the rewriting process to be fully automatic using a stochastical search method.

However, there are many cases where this is either impractical because the rewriting process takes

too long, or expert programmers want precise control about applying optimizations to a particular

program targeting a particular hardware device. Therefore, we introduce a language that allows a

programmer to specify optimization strategies as compositions of rewrite rules.

4 ELEVATE: A LANGUAGE FOR DESCRIBING OPTIMIZATION STRATEGIES

In this section, we describe our functional language for describing optimization strategies: ELEVATE.
It complements our functional language for describing computations. ELEVATE is heavily inspired

by earlier works on strategy languages for term rewriting systems, e.g., Stratego [Visser et al. 1998].

4.1 Language Features and Types

ELEVATE is a functional language with a standard feature set, including function recursion, algebraic

data types, and pattern matching. Besides the standard scalar data types such as int, types of
interests are function types and pair types. Our current implementation is a shallow embedded

DSL in Scala, and we use Scala-like notation for ELEVATE strategies in the paper.

4.2 Strategies

A strategy is the fundamental building block of ELEVATE. Strategies encode program transformations

and are modeled as functions with the following type:

type Strategy[P] = P => RewriteResult[P]

Here, P is the type of the rewritten program. P could, for example, be Rise for RISE programs. A

RewriteResult is an applicative error monad encoding the success or failure of applying a strategy:

RewriteResult[P] = Success[P](p: P)
| Failure[P](s: Strategy[P])

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:9

Fig. 5. RISE’s map-fusion rule as an AST transformation.

𝜖 { id (addId)

(id :𝑚.𝑛.𝛿 →𝑚.𝑛.𝛿) { transpose >> transpose (idToTranspose)

transpose >> map(map(f)) { map(map(f)) >> transpose (transposeMove)

map(f) { split(n) >> map(map(f)) >> join (splitJoin)

map(f >> g) {
{
map(f) >> map(g) (mapFission/mapFusion)

map(f) >> reduce(fun((acc,y), op(acc)(y)))(init) (fuseReduceMap/fissionReduceMap)
{

{
reduce(fun((acc,y), op(acc)(f(y))))(init)

Fig. 6. Rewrite rules of high-level RISE expressions used for optimizations in this paper

In case of a successful application, Success contains the transformed program, in case of a failure,

Failure contains the unsuccessful strategy.
The simplest example of a strategy is id that always succeeds by returning its input program:

def id[P]: Strategy[P] = (p: P) => Success(p)

The fail strategy does the opposite and always fails while recording that it was the failing strategy:

def fail[P]: Strategy[P] = (p: P) => Failure(fail)

4.3 Rewrite Rules as Strategies

In ELEVATE, rewrite rules are also strategies, i.e., functions satisfying the same type given above.

Let us suppose we want to apply some well-known rewrite rules such as the fusion of two map calls:
map(f) << map(g){ map(f << g). In RISE, the left-hand side of the rule is expressed as:

val p: Rise = fun(xs, map(f)(map(g)(xs)))

Figure 5 (left) shows the AST representation of the body of this expression, with function applica-

tions explicit as app nodes. The fusion rule is implemented in ELEVATE as follows:
def mapFusion: Strategy[Rise] = p => p match {

case app(app(map, f), app(app(map, g), xs)) => Success(map(fun(x, f(g(x))))(xs))
case _ => Failure(mapFusion) }

Note that we are mixing RISE (i.e., map(f)) and ELEVATE expressions. We use app(f, x) to pattern-
match the function application that we write as f(x) in RISE. The expression nested inside Success
is the rewritten expression shown in Figure 5 on the right.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:10 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 mapSplit : (n: N) → {m: N} → {s t: Set} → (f: s → t) → (xs: Vec s (m * n)) →
2 map (map f) (split n {m} xs) ≡ split n {m} (map f xs)
3 simplification : (n: N) → {m: N} → {t: Set} → (xs: Vec t (m*n)) → (join ◦ split n {m}) xs ≡ xs
4 {- Split-join rule proof -}
5 splitJoin : {m: N} → {s: Set} → {t: Set} → (n: N) → (f: s → t) → (xs: Vec s (m * n)) →
6 (join ◦ map (map f) ◦ split n {m}) xs ≡ map f xs
7 splitJoin {m} n f xs =
8 begin
9 (join ◦ map (map f) ◦ split n {m}) xs
10 ≡⟨⟩
11 join (map (map f) (split n {m} xs))
12 ≡⟨ cong join (mapSplit n {m} f xs) ⟩
13 join (split n {m} (map f xs))
14 ≡⟨ simplification n {m} (map f xs) ⟩
15 map f xs
16 ■

Listing 3. Proof of correctness of the splitJoin rewrite rule in Agda

Figure 6 shows rewrite rules that are used as basic building blocks in this paper for expressing

optimizations such as tiling, discussed later in Section 5. One advantage of the functional rewrite

approach is that these rules are intuitive and that there is a clear pathway to prove their correct-

ness. We have formally proven correctness in Agda, a dependently typed programming language

originally developed by Norell [2007]. We encoded the semantics of the RISE patterns in Agda and

expressed the rewrite rules as types following the propositions-as-types interpretation [Wadler

2015]. Providing a well-defined semantics allows precise reasoning about the rewrite rules and

their composition as strategies - one of the key aims that we set out for our approach.

Listing 3 shows the proof for the splitJoin rewrite rule in Agda. The proof makes use of

two lemmas shown at the top. The mapSplit lemma says that the split primitive splitting a one-

dimensional array into a two-dimensional one can either be applied before two nested maps or after
a single one. The simplification lemma states that split and its opposite pattern join cancel each
other out. In the future, we want to directly generate implementations from Agda for rewrite rules

which integrate with our Scala DSL, guaranteeing that we only use proven rules.

4.4 Strategy Combinators

An idea that ELEVATE inherits from Stratego [Visser 2004] is to describe strategies as compositions ś

one of the key aims that we set out for our approach. Therefore, we introduce strategy combinators.

The seq combinator is given two strategies fs and ss and applies the first strategy to the input

program p. Afterward, the second strategy is applied to the result.

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] = fs => ss => p => fs(p) ż= (q => ss(q))

The seq strategy is successful when it applied both strategies successfully in succession; otherwise,

seq fails. In our combinator’s implementation, we use the monadic interface of RewriteResult and
use the standard Haskell operators ż= for monadic bind, <|> for mplus, and <$> for fmap.

The lChoice combinator is given two strategies and applies the second one only if the first failed.

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] = fs => ss => p => fs(p) <|> ss(p)

We use <+ as an infix operator for lChoice and ‘;‘ for seq. Additionally, the try combinator applies

a strategy and, in case of failure, applies the identity strategy. Therefore, try never fails.

def try[P]: Strategy[P] => Strategy[P] = s => p => (s <+ id)(p)

repeat applies a strategy until it is no longer applicable.

def repeat[P]: Strategy[P] => Strategy[P] = s => p => try(s ‘;‘ repeat(s))(p)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:11

Fig. 7. Two possible locations for applying the map-fusion rule within the same program.

4.5 Traversals as Strategy Transformers

We implement the mapFusion strategy we saw in the previous subsection as a function in ELEVATE.
Therefore, its match statement will try to pattern-match its argument ś the entire program. This

means that a strategy on its own is hard to reuse in different circumstances.

Also, a strategy is often applicable at multiple places within the same program or only applicable

at a specific location. For example, the mapFusion strategy is applicable twice in the following RISE

program:

val threemaps = fun(xs, map(f)(map(g)(map(h)(xs))))

We may fuse the first or last two maps, as shown in Figure 7.

In ELEVATE, we use traversals to describe at which exact location a strategy is applied. Luttik et al.

[1997] proposed three basic traversals encoded as strategy transformers:

type Traversal[P] = Strategy[P] => Strategy[P]
def all[P]: Traversal[P]; def one[P]: Traversal[P]; def some[P]: Traversal[P]

all applies a given strategy to all sub-expressions of the current expression and fails if the strategy
is not applicable to all sub-expressions. one applies a given strategy to exactly one sub-expression

and fails if the strategy is not applicable to any sub-expression. some applies a given strategy to

at least one sub-expression but potentially more if possible. one and some are allowed to choose

sub-expressions non-deterministically.

In ELEVATE, we see these three basic traversals as a type class: an interface that has to be imple-

mented for each program type P. The implementation for RISE is straightforward. RISE programs

are represented by ASTs such as the one in Figure 7; therefore, all, one, and some correspond to the

obvious implementations on the tree-based representation.

To fuse the first two maps in Figure 7, we use the one traversal: one(mapFusion)(threemaps). This
will apply the mapFusion strategy, not at the root of the AST, but instead one level down, first trying
to apply the strategy (unsuccessfully) to the function parameter, and then (successfully) to the

function body highlighted in the upper-right blue box.

To fuse the last two maps, we use the one traversal twice to apply mapFusion two levels down

in the AST: one(one(mapFusion))(threemaps). This successfully applies the fusion strategy to the

expression highlighted in the lower-left purple box in Figure 7.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:12 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

4.6 RISE-Specific Traversal Strategies

The traversals we have discussed so far are not specific to RISE. These traversals are flexible but offer

only limited control as for one and some, the selection of sub-expressions is either non-deterministic

or implementation-dependent (as for RISE). Especially in the context of program optimization, it

rarely makes sense to apply a strategy to all sub-expressions.
In ELEVATE, one can easily specify program language-specific traversals. As we have seen in the

previous section, RISE is a functional language using 𝜆-calculus as its representation. Therefore, it

makes sense to introduce traversals that navigate the two core concepts of 𝜆-calculus: function
abstraction and application.
To apply a strategy to the body of a function abstraction, we define the following traversal:

def body: Traversal[Rise] = s => p => p match {
case fun(x,b) => (nb => fun(x, nb)) <$> s(b)
case _ => Failure(body(s)) }

The body traversal applies the strategy s to the function body, and if successful, a function is built

around the transformed body. Similarly, we define traversals function and argument for function
applications:

def function: Traversal[Rise] = s => p => p match {
case app(f,a) => (nf => app(nf, a)) <$> s(f)
case _ => Failure(function(s)) }

def argument: Traversal[Rise] = s => p => p match {
case app(f,a) => (na => app(f, na)) <$> s(a)
case _ => Failure(argument(s)) }

For the RISE program shown in Figure 7, we can now describe a precise traversal path in the

AST. To fuse the first two maps, we may write body(mapFusion)(threemaps), and to fuse the others,

we write body(argument(mapFusion))(threemaps). Both versions describe the precise path from the

root to the sub-expression at which the fusion rule is applicable.

4.7 Complete Expression Traversal Strategies

All of the traversal primitives introduced so far apply their given strategies only to immediate

sub-expressions. Using strategy combinators and traversals, we can define recursive strategies

which traverse entire expressions:

def topDown[P]: Traversal[P] = s => p => (s <+ one(topDown(s)))(p)
def bottomUp[P]: Traversal[P] = s => p => (one(bottomUp(s)) <+ s)(p)
def allTopDown[P]: Traversal[P] = s => p => (s ‘;‘ all(allTopDown(s)))(p)
def allBottomUp[P]: Traversal[P] = s => p => (all(allBottomUp(s)) ‘;‘ s)(p)
def tryAll[P]: Traversal[P] = s => p => (all(tryAll(try(s))) ‘;‘ try(s))(p)

topDown and bottomUp are useful strategies traversing an expression either from the top or from

the bottom, trying to apply a strategy at every sub-expression and stopping at the first success-

ful application. If the strategy is not applicable at any sub-expression, topDown and bottomUp fail.
allTopDown and allBottomUp do not use lChoice, insisting on applying the given strategy to every

sub-expression. The tryAll strategy is often more useful as it wraps its given strategy in a try
and thus never fails but applies the strategy wherever possible. Also, note that the tryAll strategy
traverses the AST bottom-up instead of top-down. Visser [2004] initially proposed these traversals,

and we use them here with slightly different names more fitting for our use case.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:13

4.8 Normalization

When implementing rewrite rules, such as the mapFusion rule as strategies, the match statement

expects the input expression to be in a particular syntactic form. For a functional language like RISE,

we might, for example, expect that expressions are fully 𝛽-reduced. To ensure that expressions

satisfy a normal-form, we define:

def normalize[P]: Strategy[P] => Strategy[P] = s => p => repeat(topDown(s))(p)

The normalize strategy repeatedly applies a given strategy to every possible sub-expression until it

can not be applied anymore. Therefore, after normalize successfully finishes, it is not possible to

apply the given strategy to any sub-expression any more.

Beta-Eta-Normal-Form. 𝜆-calculus (and RISE) allows for semantically equivalent but syntactically

different expressions. For example, fun(x => f(x)) is equivalent to f iff x does not appear free in f.
Transforming between these representations is called 𝜂-reduction and 𝜂-abstraction, which we also

implement as ELEVATE strategies:
def etaReduction: Strategy[Rise] = p => p match {

case fun(x1, app(f, x2)) if x1 == x2 && not(contains(x1))(f) => Success(f)
case _ => Failure(etaReduction)}

def etaAbstraction: Strategy[Rise] = p => p match {
case f if hasFunctionType(f) => Success(fun(x, f(x)))
case _ => Failure(etaAbstraction) }

Note thatwe can use two ELEVATE strategies, not and contains, in the pattern guard of the etaReduction
strategy:

def not: Strategy[P] => Strategy[P] = s => p => s(p) match {
case Success(_) => Failure(not(s))
case Failure(_) => Success(p) }

def contains[P]: P => Strategy[P] = r => p => topDown(isEqualTo(r))(p)

def isEqualTo[P]: P => Strategy[P] = r => p =>
if(p == r) Success(p) else Failure(isEqualTo(r))

The RewriteResult obtained by applying not(contains(x1)) to f is implicitly cast to a Boolean
eventually. The contains strategy traverses f from top to bottom and checks if it finds x1 using the

isEqualTo strategy.
The simplest normal-form we often use in the following is the 𝛽𝜂-normal-form (BENF) which

exhaustively applies 𝛽- and 𝜂-reduction: def BENF = normalize(betaReduction <+ etaReduction).
Since not every function abstraction is 𝜂-reducible, the function arguments of RISE’s higher-order

primitives map and reducemight have different syntactic forms. Different syntactic forms complicate

the development of rewrite rules as they are always defined to match a particular syntactic structure.

In order to simplify the application of strategies and the development of new rules, we make heavy

use of an additional normal-form, which unifies the syntactic structure of function arguments to

higher-order primitives.

Data-Flow-Normal-Form. The Data-Flow-Normal-Form (DFNF) is an essential normal-form for

RISE programs because it ensures a particular syntactic structure that we rely on during rewriting.

Specifically, DFNF makes the data flow in a RISE program explicit in two ways: First, by ensuring

a function abstraction is present in every higher-order primitive, and second, by ensuring every

higher-order primitive is fully applied. For example, DFNF ensures that a map is always provided two

arguments: a function and an input array, even if it could be 𝛽-reduced.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:14 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 def DFNF = BENF ‘;‘ // (1) normalize using beta-eta-normal-form
2 // (2) ensure that the argument of a map is a function abstraction
3 normalize(argOf(map, not(isFun) ‘;‘ etaAbstraction))‘;‘
4 // ... similar normalization for reduce primitive (left out for brevity)
5 // (3) ensure every map is provided two arguments (and every reduce is provided three arguments)
6 normalize(
7 // (3.1) if there is a map in 2 hops (or there is a reduce in three hops) ...
8 one(function(isMap) <+ one(function(isReduce))) ‘;‘
9 // (3.2) ... and the current node is not an apply ...
10 not(isApplication) ‘;‘
11 // (3.3) eta-abstract
12 one((function(isMap) <+ one(function(isReduce))) ‘;‘ etaAbstraction)

Listing 4. Definition of the Data-Flow-Normal-Form (DFNF)

... app

map

fun

f
arg

BENF-Normalized DFNF-Normalized

Fig. 8. Two semantically equivalent but syntactically different versions of the RISE expression map(f). The
left version is beta-eta normalized using BENF, and the right version is in data-flow-normal-form (DFNF).

Figure 8 shows the result of applying the DFNF to the RISE expression map(f). First, the input

expression is normalized using BENF (line 1) which generally decreases the AST size.

Second, we unify the syntactic form of the function arguments of higher-order primitives map and
reduce. Listing 4 shows this unification for the map primitive in line 3, the definition for the reduce
primitive is similar. The argOf traversal is similar to argument we already introduced; however, it

only traverses to the argument of the function application if the applied function matches the

given input (map in this case). Essentially, whenever the function argument of a map primitive is not

already a function abstraction (as on the left side of Figure 8), we eta-abstract it. Using the not and
isFun predicates that are themselves strategies, we describe the desired form in a declarative way.

Third, we ensure that higher-order primitives are fully applied. For example, the map primitive on

the left side of Figure 8 is not applied to an array argument. By applying DFNF, the array argument

𝜂1 is added by eta-abstracting again, as shown on the right side of the figure. This normalization is

also naturally expressed using traversals and predicates: Whenever, we can reach a map node in two

hops (one(function(isMap))), and the current node is not already an app-node (not(isApplication)),
we know that the map primitive is not applied to an array argument, so we apply eta-abstraction.

Even though the size of the ASTmight increase significantly by applying DFNF instead of only BENF,
we now have a unified syntactic structure. This structure simplifies the traversal and implementation

of more complex optimization strategies, as we will see in the following section.

Confluence and Termination. Confluence (multiple non-deterministic rewrite paths eventually

produce the same result) and termination are desirable properties for normal-forms in term rewriting

systems. In ELEVATE, confluence only becomes a factor when the implementations of one and some
are non-deterministic. For RISE, we are not interested in having multiple non-deterministic rewrite

paths but instead need precise control over where, when, and in which order specific rules are

applied. Therefore, we avoid non-determinism and do not need to worry about confluence.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:15

Termination of normal-forms, and ELEVATE programs in general, must be evaluated on a case by

case basis as it critically depends on the chosen set of strategies. For example, it is trivial to build

a non-terminating normal-form using the id strategy that is always applicable. We currently do

not prevent the creation of non-terminating strategies, similar to how almost all general-purpose

computational languages do not prevent writing non-terminating programs. In the future, we are

interested in introducing a more powerful type system for ELEVATE to better assist the user in

writing well-behaved strategies.

5 EXPRESSING HIGH-PERFORMANCE OPTIMIZATIONS AS REWRITE STRATEGIES

In the domain of deep learning, high-performance optimizations are particularly important. While

Visser et al. [1998] showed that strategy languages can be used to build program optimizers,

the optimizations implemented as strategies were not targeted towards high-performance code

generation but rather to optimize a functional ML-like language. To the best of our knowledge, this

paper is the first to describe a holistic functional approach for high-performance code generation

that implements high-performance optimizations as rewrite strategies and can compete with

state-of-the-art imperative solutions.

In this section, we explore using ELEVATE to encode high-performance optimizations by leveraging

its ability to define custom abstractions. We use TVM by Chen et al. [2018] as a comparison for a

state-of-the-art imperative optimizing deep learning compiler with a scheduling API implemented

in Python. TVM allows to express computations using an EDSL (in Python) and control the

application for optimizations using a separate scheduling API. We use RISE as the language to

express computations and develop separate strategies in ELEVATE, implementing the optimizations

equivalent to those available in TVM’s scheduling API.

We start by expressing basic scheduling primitives such as parallel and vectorize in ELEVATE. Then
we explore the implementation of more complex scheduling primitives like tile by composition

in ELEVATE, whereas it is a built-in optimization in TVM. Following our functional approach, we

express sophisticated optimization strategies as compositions of a small set of general rewrite rules

resulting in a more principled and even more powerful design. Specifically, the tiling optimization

strategy in ELEVATE can tile arbitrary many dimensions instead of only two, while being composed

of only five RISE-specific rewrite rules.

5.1 Basic Scheduling Primitives as ELEVATE Strategies
The TVM scheduling primitives parallel, split, vectorize, and unroll specify loop transformations

targeting a single loop. We implement those as rewrite rules for RISE. The parallel scheduling

primitive indicates that a particular loop shall be computed in parallel. In RISE, this is indicated

by transforming a high-level map into its low-level mapPar version as expressed in the following

ELEVATE strategy:
def parallel: Strategy[Rise] = p => p match {

case map => Success(mapPar)
case _ => Failure(parallel) }

We define a rewrite into the sequential variant mapSeq in the same style.

TVM’s split scheduling primitive implements loop-blocking (also known as strip-mining). In

RISE, this is achieved by transforming the computation over an array expressed by map(f): first,
the input is split into a two-dimensional array using split(n), then f is mapped twice to apply the

function to all elements of the now nested array, and finally, the resulting array is flattened into

the original one-dimensional form using join.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:16 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

def split(n: Int): Strategy[Rise] = p => p match {
case app(map, f) => Success(split(n) >> map(map(f)) >> join)
case app(app(reduce, op), init) => Success(
split(n) >> reduce(fun(a, fun(y, op(a, reduce(op)(init)(y)))))(init))

case _ => Failure(split(n)) }

It is important to note that RISE does not materialize the intermediate two-dimensional array in

memory. Instead, we only use this representation inside the compiler for code generation. In TVM,

the split scheduling primitive can also be used to block reduction loops for which we use the reduce
primitive in RISE. To make the split strategy applicable to both map and reduce primitives, we add

a second case to the strategy which blocks a single reduce into two nested reductions.

The vectorize scheduling primitive indicates that a loop shall be computed in a SIMD-fashion

and its equivalent ELEVATE vectorize strategy implementation is similar to the split strategy:

def vectorize(n: Int): Strategy[Rise] = p => p match {
case app(map, f) if isScalarFun(f) => Success(asVector(n) >> map(mapVec(f)) >> asScalar)
case _ => Failure(vectorize(n)) }

First, it splits the input of scalars into an array of vectors using the asVector primitive. Then, f
is mapped twice and transformed to perform vectorized computations using map(mapVec(f)), and
finally, the resulting array of vectors is transformed into an array of scalars again.

Vectorization is most efficient when applied to the innermost loop of a loop-nest. In RISE, this

corresponds to applying the vectorize strategy to the innermost map of potentially nested maps.
Applying a strategy to the innermost map of nested maps is achieved in ELEVATE by traversing the

expression beginning from the bottom (for example using bottomUp(vectorize)). The additional con-
straint isScalarFun(f) ensures that only functions operating on scalars are vectorized by inspecting

f’s type. The restriction to scalar functions for vectorize is a current limitation of RISE.

The unroll strategy rewrites the high-level map and reduce primitives into RISE low-level primi-

tives that will be unrolled by the RISE compiler during code generation.

def unroll: Strategy[Rise] = p => p match {
case map => Success(mapSeqUnroll)
case reduce => Success(reduceSeqUnroll)
case _ => Failure(unroll) }

5.2 Multi-dimensional Tiling as an ELEVATE Strategy
Tiling is a crucial optimization improving the cache hit rate by exploiting locality within a small

neighborhood of elements. TVM’s tile is a more complicated scheduling primitive to implement

because it is essentially a combination of two traditional loop transformations: loop-blocking and

loop-interchange. In fact, tile in TVM is a built-in combination of split for loop-blocking and reorder

for loop-interchange. We already saw how to implement split using ELEVATE. We will now discuss

how to implement a tile strategy using a combination of rules, normal-forms, and domain-specific

traversals. We construct a generalized strategy out of a few simple building blocks that can tile an

arbitrary number of dimensions, whereas TVM only implements 2D tiling.

We require five basic rules for expressing our multidimensional tiling strategy: splitJoin, addId,
idToTranspose, transposeMove, and mapFission (all shown in Figure 6). We implement these rules as

basic ELEVATE strategies, as shown in the previous sections. In addition, we require three standard

𝜆-calculus-specific transformations: 𝜂- and 𝛽-reduction, and 𝜂-abstraction.

Our tiling strategy expects a list of tile sizes, one per tiled dimension:

def tileND: List[Int] => Strategy[Rise]

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:17

1 def tileND(n: List[Int]): Strategy[Rise] = DFNF ‘;‘ (n.size match {
2 case 1 => function(split(n.head)) // loop-blocking
3 case i => fmap(tileND(d-1)(n.tail)) ‘;‘ // recurse
4 function(split(n.head)) ‘;‘ // loop-blocking
5 interchange(i) }) // loop-reorder

Listing 5. ELEVATE strategy implementing tiling recursively for arbitray dimensions.

Fig. 9. Visualization of the fmap traversal which traverses to the function argument of a RISE-map primitive

The two-dimensional tiling, which is equivalent to TVM’s built-in tile scheduling primitives, is

expressed as tileND(List(x,y))(mm). For this 2D case, we also write tile(x,y)(mm).
Listing 5 shows the ELEVATE implementation of the tiling optimization. The intuition for our

tileND implementation is simple: First, we ensure that the required rules are applicable to the

input expression by normalizing the expression using the DFNF normal-form. Then, we apply the

previously introduced split strategy to every map to be blocked, recursively going from innermost

to outermost. Finally, we interchange dimensions accordingly.

We start to explain how we recursively traverse (using fmap) to apply loop-blocking and then

discuss how we interchange dimensions in RISE (interchange).

Recursively Applying Loop-Blocking. To recursively apply the loop blocking strategy to nested

maps, we make use of the RISE-specific traversal fmap:

def fmap: Traversal[Rise] = s => function(argOf(map, body(s)))

Figure 9 visualizes the traversal of the fmap strategy; the traversed path is highlighted in blue. fmap
traverses to the function argument of a map primitive and applies the given strategy s. Note that
the strategy requires the function argument of a map primitive to be a function abstraction. This

syntactic structure can be assumed because we normalize the expression using DFNF. The fmap
strategy is useful because it can be nested to "push" the application of the given strategy inside of a

map-nest. For example,

fmap(fmap(split(n)))(DFNF(map(map(map(f)))))

skips two maps and applies loop-blocking to the innermost map. In Listing 5 line 3, we use fmap to
recursively call tileND applying loop-blocking first to the inner maps before to the outer map:

fmap(tileND(d-1)(n.tail)) ‘;‘ // apply loop-blocking to inner map
function(split(n.head)) ‘;‘ ... // apply loop-blocking to outer map

Loop-Interchange in tile. After recursively blocking all maps, we use interchange to rearrange

the dimensions in the correct order. For simplicity, we describe the two-dimensional case of tiling

matrix multiplication. The untiled matrix multiplication implementation contains a loop nest

of depth three, corresponding to a reduce primitive nested in two map primitives in RISE. For

brevity, we write this loop-nest as (𝑀.𝑁 .𝐾), indicating the dimensions each loop iterates over from

outermost to innermost. After applying loop-blocking to the outermost two loops, the loop-nest

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:18 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

has been transformed into a 5-dimensional loop-nest (𝑀.mTile.𝑁 .nTile.𝐾). To create the desired

tiling iteration order (𝑀.𝑁 .mTile.nTile.𝐾), we need to swap two inner loops. To achieve this, we

introduce two transpose patterns inside the map nest using the rules shown in Figure 6:

val loopInterchange2D = // interchange-strategy used for 2D-tiling
fmap(// in: map(map(map(map(dot)))) ...
addId ‘;‘ // map(id ń map(map(map(dot))))
idToTranspose ‘;‘ // map(transpose ń transpose ń map(map(map(dot))))
DFNF ‘;‘ // normalize intermediate expression
argument(transposeMove)) ‘;‘ // map(transpose ń map(map(map(dot))) ń transpose)

normalize(mapFission) // out: map(transpose) ń map(map(map(map(dot)))) ń map(transpose)

Creating the two transpose patterns inside the map nest swaps the iteration order in the desired

way. The general interchange case simply adds multiple transpose pairs in the required positions.

Using normalization, domain-specific traversals, and five RISE-specific rewrite rules, we were

able to define a multidimensional tiling strategy. As every rewrite rule, as well as their compositions,

is correct, as shown earlier, we ensure the correctness of the overall optimization.

5.3 Reordering as an ELEVATE Strategy
Finally, we briefly discuss the implementation of TVM’s reorder strategy, which enables arbitrary

loop-interchanges. Generally, TVM’s reorder is a generalization of the loop-interchange optimization

we discussed in the previous subsection. Due to the loopless nature of RISE, implementing TVM’s

reorder primitive as a strategy is slightly more involved. Instead of merely interchanging perfectly

nested loops, we achieve the same optimization effect in RISE by interchanging the nesting of map
and reduce patterns. Therefore, there are multiple possible combinations to consider.

The most straightforward case are two nested maps that correspond to a two-dimensional loop-

nest. To interchange the loops created by the two maps, we introduce two transpose primitives and

move one before and one after the map-nest, as discussed in the previous subsection.

In addition to interchanging loop-nests created by nested maps, we also need to consider in-

terchanging nested map and reduce primitives. For computations including matrix multiplication,

hoisting reduction loops higher up in a loop nest is often beneficial as shown in the following listings:

1 for (int i = 0; i < M; i++) { /* map */
2 float acc = 0.0f; /* reduce */
3 for (int j = 0; j < N; j++) {
4 acc += xs[j + (N * i)]; }
5 out[i] = acc;
6 }

Listing 6. Reducing the rows of a matrix 𝑥𝑠 with the

reduction as the inner loop

1 float acc[M]; /* reduce */
2 for (int i = 0; i < M; i++) { acc[i] = 0.0f; }
3 for (int j = 0; j < N; j++) {
4 for (int i = 0; i < M; i++) { /* map */
5 acc[i] += xs[j + (N * i)]; }}
6 for (int i = 0; i < M; i++) {out[i] = acc[i];}

Listing 7. Reducing the rows of a matrix 𝑥𝑠 with the

reduction as the outer loop

Transforming the code in Listing 6 into the code in Listing 7 enables different opportunities for

parallelizing the reduction. For example, the computation in Listing 7 can now be easily vectorized.

The following rule implements this interchange of nested map and reduce primitives.

map(reduce(+)(0))(xs :: M.N.float)
{

reduce(fun(acc, fun(y,
map(fun(x, fst(x) + snd(x)))(zip(acc)(y))))) // reduce-op

(generate(N)(0)) // reduce-init
(transpose(xs)) // reduce-input

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:19

By transposing the input and modifying the operator of the reduce primitive we can interchange

the nesting. Specifically, instead of reducing scalar values as in the input expression, the operator of

the reduce is transformed to reduce arrays using the inner map. Due to the more complex structure

of the AST after performing such a transformation, the strategy producing and traversing this tree

is similarly complicated and will not be discussed in detail. While it is possible to implement TVM’s

reorder primitive, this particular loop transformation is just not a good fit for the pattern-based

abstractions in the RISE language.

5.4 Abstractions for Describing Locations in RISE

In TVM, named identifiers describe the location at which the optimization should be applied. For

example, TVM’s split is invoked with an argument specifying the loop to block:

1 k, = s[C].op.reduce_axis
2 ko, ki = s[C].split(k, factor=4)

Using identifiers ties schedules to computational expressions and makes reusing schedules hard.

ELEVATE does not use names to identify locations, but instead uses the traversals defined in Section 4.

This is another example of how we facilitate reuse ś one of the key aims of our approach.

By using ELEVATE’s traversal strategies, we apply the basic scheduling strategies in a much more

flexible way: e.g., topDown(parallel) traverses the AST from top to bottom and will thus always

parallelize the outermost map, corresponding to the outermost for loop. tryAll(parallel) traverses
the whole AST instead, and all possible maps are parallelized.

In order to apply optimizations on large ASTs, it is often insufficient to use the topDown or tryAll
traversals. For example, we might want to block a specific loop in a loop-nest. Using topDown(split)
always blocks the outermost, loop and tryAll(split) blocks every loop in the loop nest. Similarly,

none of the introduced traversals so far allow the description of a precise loop conveniently, or

rather a precise location, required for these kinds of optimizations. Strategy predicates allow us to

describe locations in a convenient way. A strategy predicate checks the program for a syntactic

structure and returns Success without changing the program if the structure is found. Two simple

example for strategy predicates are isReduce and isApp that check if the current node is a reduce
primitive or an applied function respectively:

def isReduce: Strategy[Rise] = p => p match {
case reduce => Success(reduce)
case _ => Failure(isReduce) }

def isApp(funPredicate: Strategy[Rise]): Strategy[Rise] = p => p match {
case app(f,_) => (_ => p) <$> funPredicate(f)
case _ => Failure(isApp(s)) }

These predicates can be composed with the regular traversals to define precise locations. The ‘@‘
strategy allows us to describe the application of strategies at precise locations conveniently:

def ‘@‘[P](s: Strategy[P], t: Traversal[P]) = t(s)

Wewrite this function in infix notation and use Scala’s implicit classes for this in our implementation.

The left-hand side of the ‘@‘ operator specifies the strategy to apply, and the right-hand side

specifies the precise location as a traversal. This nicely separates the strategy to apply from the

traversal describing the location. This abstraction is especially useful for complex optimization

strategies with nested location descriptions. For RISE, we specify multiple useful traversals and

predicates, which can be extended as needed. Two useful ones are outermost and mapNest that are
defined as follows.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:20 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

def outermost: Strategy[Rise] => Traversal[Rise] = pred => s => topDown(pred ‘;‘ s)
def mapNest(d: Int): Strategy[Rise] = p => (d match {

case x if x == 0 => Success(p)
case x if x < 0 => Failure(mapNest(d))
case _ => fmap(mapNest(d-1))(p) })

outermost traverses from top to bottom and visits nested primitives from outermost to innermost,

trying to apply the predicate. Only if the predicate is applied successfully, it applies the given

strategy s. Similarly, we define an innermost function which uses bottomUp instead of topDown. The
mapNest predicate recursively traverses inside a DFNF-normalized map-nest of a given depth using

nested fmap traversals. If the traversal is successful, a map-nest of depth d has been found.

By combining these abstractions, we conveniently describe applying the tiling optimization to

the two outermost loop nests elegantly in ELEVATE:
(tile(32,32) ‘@‘ outermost(mapNest(2)))(mm)

Identifying locations in the AST could potentially be simplified by tagging sub-expressions, i.e.,

naming AST sub-graphs. However, then rewrite rules would have to additionally describe how to

name the rewritten program. For our current use-cases, the presented location descriptions are

sufficient, but we are exploring further ways to simplify the description of specific AST locations.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate our functional approach to high-performance code generation. We use

ELEVATE strategies to describe optimizations that are equivalent to TVM schedules using matrix-

matrix multiplication as our primary case study. We compare the performance achieved using code

generated by the RISE compiler and code generated by TVM. Afterward, we investigate a different

domain and compare against Halide, the state-of-the-art compiler for image processing.

6.1 Optimizing Matrix Matrix Multiplication with ELEVATE Strategies
For our case study of matrix-matrix multiplication, we follow a tutorial from the TVM authors

that discusses seven differently optimized versions: baseline, blocking, vectorized, loop permutation,
array packing, cache blocks, and parallel. Each version is designed to improve the previous version

progressively. For each TVM schedule, we show an equivalent strategy implemented with ELEVATE
and evaluate the performance achieved. Using the TVM-like scheduling abstractions implemented

as strategies and the traversal utilities, we now discuss how to describe entire schedules in ELEVATE.
Baseline. For the baseline version, TVM uses a default schedule, whereas ELEVATE describes

the implementation decisions explicitly ś one of the key aims that we set out for our approach:

1 // matrix multiplication in RISE
2 val dot = fun(as, fun(bs, zip(as)(bs) |>
3 map(fun(ab, mult(fst(ab))(snd(ab)))) |>
4 reduce(add)(0)))
5 val mm = fun(a, fun(b, a |>
6 map(fun(arow, transpose(b) |>
7 map(fun(bcol,
8 dot(arow)(bcol)))))))

1 // baseline strategy in ELEVATE
2 val baseline = (DFNF ‘;‘
3 fuseReduceMap ‘@‘ topDown)
4 (baseline ‘;‘ lowerToC)(mm)

Listing 8. RISE matrix multiplication epxression (top)

and baseline strategy in ELEVATE (bottom)

1 # Naive matrix multiplication algorithm
2 k = tvm.reduce_axis((0, K), 'k')
3 A = tvm.placeholder((M, K), name='A')
4 B = tvm.placeholder((K, N), name='B')
5 C = tvm.compute((M, N),lambda x, y:
6 tvm.sum(A[x, k] * B[k, y],
7 axis=k),name='C')
8
9
10
11
12 # TVM default schedule
13 s = tvm.create_schedule(C.op)

Listing 9. TVM matrix multiplication algorithm and

baseline (default) schedule

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:21

1 val appliedReduce = isApp(isApp(isApp(isReduce)))
2 val blocking = (baseline ‘;‘
3 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
4 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘
5 split(4) ‘@‘ innermost(appliedReduce)‘;;‘
6 reorder(List(1,2,5,6,3,4)))
7 (blocking ‘;‘ lowerToC)(mm)

Listing 10. ELEVATE blocking strategy

1 # blocking version
2 xo, yo, xi, yi = s[C].tile(
3 C.op.axis[0],C.op.axis[1],32,32)
4 k, = s[C].op.reduce_axis
5 ko, ki = s[C].split(k, factor=4)
6 s[C].reorder(xo, yo, ko, ki, xi, yi)

Listing 11. TVM blocking schedule

1 val loopPerm = (
2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘
3 fissionReduceMap ‘@‘ outermost(appliedReduce) ‘;;‘
4 split(4) ‘@‘ innermost(appliedReduce) ‘;;‘
5 reorder(Seq(1,2,5,3,6,4)) ‘;;‘
6 vectorize(32) ‘@‘ innermost(isApp(isApp(isMap))))
7 (loopPerm ‘;‘ lowerToC)(mm)

Listing 12. ELEVATE loop permutation strategy

1 xo, yo, xi, yi = s[C].tile(
2 C.op.axis[0],C.op.axis[1],32,32)
3 k, = s[C].op.reduce_axis
4 ko, ki = s[C].split(k, factor=4)
5 s[C].reorder(xo, yo, ko, xi, ki, yi)
6 s[C].vectorize(yi)

Listing 13. TVM loop permutation schedule

The TVM algorithm computes the dot product in a single statement in Listing 9 lines 5-7. The

RISE program shown at the top of Listing 8 describes the dot product with separate map and reduce
primitives, which are fused as described in the ELEVATE program below using the fuseReduceMap
rewrite rules from Figure 6. The lowerToC strategy rewrites map into mapSeq and reduce into reduceSeq.
Both systems generate equivalent C code of two nested loops iterating over the output matrix and

a single nested reduction loop performing the dot product. For the following optimized versions,

we do not repeat the RISE and TVM programs if they are similar to the previous version.

Blocking. For the blocking version, we reuse the baseline and lowerToC strategy, but first, we
use the abstractions built in the previous sections, emulating the TVM schedule as shown in

Listing 10 and 11. First, we tile, then we split, and then we reorder, just as specified in the TVM

schedule. To split the reduction, we need to fission the fused map and reduce primitives again

using fissionReduceMap. We describe locations using outermost and innermost, we apply tile to the

outermost maps and split to the nested reduction. In contrast to TVM, for reorder, we identify
dimensions by index rather than by name. We introduce the ‘;;' combinator for convenience. It

denotes that we apply DFNF to normalize intermediate expressions between each step.

Vectorized and Loop Permutation. The loop permutation version in Listing 12 performs vectoriza-

tion of the innermost map using vectorize and applies a different reordering of dimensions as in the

blocking version before.

Array Packing. So far, ELEVATE’s strategies and TVM’s schedules were reasonably similar. The

array packing version is the first to emphasize the flexibility of our holistic functional approach. As

already discussed in the motivation section, some optimizations are not expressible in TVM’s sched-

uling API without changing the algorithm ś clearly violating the separation between specifying

computations and optimizations. Here specifically, the array packing version in Listing 15 permutes

the elements of the B matrix in memory to improve the memory access patterns by introducing an

additional computation pB in lines 6-7, before using it in the computation in lines 8-10.

For our implementation of the array packing version in Listing 14, we are not required to change

the RISE program, but define and apply the array packing of matrix 𝐵 simply as another rewrite step

in ELEVATE using the storeInMemory strategy described below. To complete the entire strategy for

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:22 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 val appliedMap = isApp(isApp(isMap))
2 val isTransposedB = isApp(isTranspose)
3
4 val packB = storeInMemory(isTransposedB,
5 permuteB ‘;;‘
6 vectorize(32) ‘@‘ innermost(appliedMap) ‘;;‘
7 parallel ‘@‘ outermost(isMap)
8) ‘@‘ inLambda
9
10 val arrayPacking = packB ‘;;‘ loopPerm
11 (arrayPacking ‘;‘ lowerToC)(mm)

Listing 14. ELEVATE array packing strategy

1 # Modified algorithm
2 bn = 32
3 k = tvm.reduce_axis((0, K), 'k')
4 A = tvm.placeholder((M, K), name='A')
5 B = tvm.placeholder((K, N), name='B')
6 pB = tvm.compute((N / bn, K, bn),
7 lambda x, y, z: B[y, x * bn + z], name='pB')
8 C = tvm.compute((M,N), lambda x,y:
9 tvm.sum(A[x,k] * pB[y//bn,k,
10 tvm.indexmod(y,bn)], axis=k),name='C')
11 # Array packing schedule
12 s = tvm.create_schedule(C.op)
13 xo, yo, xi, yi = s[C].tile(
14 C.op.axis[0], C.op.axis[1], bn, bn)
15 k, = s[C].op.reduce_axis
16 ko, ki = s[C].split(k, factor=4)
17 s[C].reorder(xo, yo, ko, xi, ki, yi)
18 s[C].vectorize(yi)
19 x, y, z = s[pB].op.axis
20 s[pB].vectorize(z)
21 s[pB].parallel(x)

Listing 15. TVM array packing schedule and algo.

this version, we compose the array packing together with permuteB that uses transpose primitives

to implement the permutation similarly to interchange for the tile strategy. Finally, we can simply

reuse the prior loopPerm strategy to complete this version.

The strategy for storing sub-expressions in memory uses the toMem primitive of RISE and is

defined as follows:

def storeInMemory(what: Strategy[Rise], how: Strategy[Rise]): Strategy[Rise] = { p =>
extract(what)(p) ż= (extracted => { how(extracted) ż= (storedSubExpr => {

val idx = Identifier(freshName("x"))
replaceAll(what, idx)(p) match {
case Success(replaced) => Success(toMem(storedSubExpr)(fun(idx, replaced)))
case Failure(_) => Failure(storeInMemory(what, how))

}})}}

// helper-functions
def replaceAll(exprPredicate: Strategy[Rise], withExpr: Rise): Strategy[Rise] =

p => tryAll(exprPredicate ‘;‘ insert(withExpr))(p)
def insert(expr: Rise): Strategy[Rise] = p => Success(expr)
// find and return Rise expr which matches the exprPredicate
def extract(exprPredicate: Strategy[Rise]): Strategy[Rise] = ...

}

def inLambda(s: Strategy[Rise]): Strategy[Rise] =
isLambda ‘;‘ ((p:Rise) => body(inLambda(s))(p)) <+ s

The storeInMemory strategy expects two arguments: what - a strategy predicate describing the sub-
expression to store and how - the strategy that specifies how to perform the copy. In the arrayPacking
strategy, we want to store a permuted version of the transposed B (described by the isTransposedB
predicate) to memory. Since every RISE sub-expression can be stored in memory at any time, the

storeInMemory strategy only fails if the desired sub-expression (described by what) cannot be found
or cannot be stored as specified in how.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:23

1 val par = (
2 arrayPacking ‘;;‘
3 (parallel ‘@‘ outermost(isMap))
4 ‘@‘ outermost(isToMem) ‘;;‘
5 unroll ‘@‘ innermost(isReduce))
6
7 (par ‘;‘ lowerToC)(mm)

Listing 16. ELEVATE parallel strategy

1 s = tvm.create_schedule(C.op)
2 CC = s.cache_write(C, 'global')
3 xo, yo, xi, yi = s[C].tile(
4 C.op.axis[0], C.op.axis[1], bn, bn)
5 s[CC].compute_at(s[C], yo)
6 xc, yc = s[CC].op.axis
7 k, = s[CC].op.reduce_axis
8 ko, ki = s[CC].split(k, factor=4)
9 s[CC].reorder(ko, xc, ki, yc)
10 s[CC].unroll(ki)
11 s[CC].vectorize(yc)
12 s[C].parallel(xo)
13 x, y, z = s[pB].op.axis
14 s[pB].vectorize(z)
15 s[pB].parallel(x)

Listing 17. TVM parallel schedule

The toMem primitive is introduced in two steps: First, the sub-expression needs to be removed

from the original expression (p) and be replaced with the new identifier x. Second, the value for the
new identifier x needs to be extracted from the original expression p.

Cache Blocks and Parallel. The TVM version in Listing 17 changes the algorithm yet again (not

shown for brevity) to introduce a temporary buffer (CC) for the accumulation along the K-dimension

to improve the cache writing behavior and unrolls the inner reduction loop. The RISE code generator

makes accumulators for reductions always explicit. Therefore, we reuse the array packing version

adding strategies for unrolling the innermost reduction and parallelizing the outermost loop in the

body of the toMem primitive.

6.2 Scalability and Overhead of Rewriting

Wehave demonstrated that it is feasible to implement a TVM-like scheduling language by expressing

schedules as compositions of reusable strategies. Using our holistic functional approach, we express

the computation only once in RISE and express all optimizations as ELEVATE strategies.
In this section, we are interested in the scalability and overhead of our functional rewrite-based

approach using matrix-multiply as a realistic case study of high-performance code generation.

We are counting the number of successfully applied rewrite steps performed when applying a

strategy to the RISE matrix multiply expression. We count every intermediate step, which includes

traversals as these are implemented as rewrite steps too. For example, id(fun(x,x)) counts as one
rewrite step whereas (body(id))(fun(x,x)) counts as two steps because we also count the traversal
into the function body as an intermediate step.

baseline

blocking

vectorization

loop-perm

array-packing

cache-blocks

parallel

0

20,000

40,000

60,000

R
ew

ri
te

S
te
p
s

Fig. 10. Total number of successful rewrite steps when applying different optimization strategies.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:24 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

baseline

blocking

vectorization

loop-perm

array-packing

cache-blocks

parallel

50
100
200

500

1,000
2,000

R
u
n
ti
m
e

in
m
s

TVM

ELEVATE +RISE

Fig. 11. Performance of TVM vs. RISE generated code that has been optimized by ELEVATE strategies.

Figure 10 shows the number of rewrites for each version. No major optimizations are applied

to the baseline version, and 657 rewrite steps are performed. However, as soon as interesting

optimizations are applied, we reach about 40,000 steps for the next three versions and about 63,000

for the most complicated optimizations. Applying the strategies to the RISE expression took less

than two seconds per version on a commodity notebook with our unoptimized implementation.

These high numbers clearly show the scalability of our compositional approach, in which

complex optimizations are composed of a small set of fundamental building blocks. It also shows

that abstractions are required to control this many rewrite steps. The high-level strategies encode

practical optimizations and hide massive numbers of individual rewrite steps that are performed.

At the same time, developing and debugging such sophisticated strategies using ELEVATE is still
possible as there is a clear pathway towards developing debugging tools for recording traces or

rewrites or reporting which strategy was not applicable. Additionally, due to the compositional

nature of our strategy approach, one can easily inspect intermediate RISE expressions. In contrast,

debugging TVM or Halide schedules is much harder as the scheduling primitives are provided as

black-box function calls operating on the internal intermediate program representation.

6.3 Performance Comparison against TVM

In this section, we are interested in the performance achieved when optimizing RISE programs with

ELEVATE compared to TVM. Ideally, the RISE code optimized with ELEVATE should be similar to the

TVM-generated code and achieve competitive performance. We generated LLVM code with TVM

(version 0.6.dev) and C code for RISE annotated with OpenMP pragmas for the versions that include

parallelization or vectorization. The RISE generated C code was compiled with clang (v.9.0.0) using

-Ofast -ffast-math -fopenmp, which echoes the settings used by TVM and Halide1. We measured

on an Intel core i5-4670K CPU (frequency at 3.4GHz) running Arch Linux (kernel 5.3.11-arch1-1).

We measured wall-time for RISE-generated code and used TVM’s built-in measurement API. We

measured 100 iterations per version, reporting the median runtimes in milliseconds.

Figure 11 shows the performance of RISE and TVM generated code. The code generated by

RISE controlled by the ELEVATE optimization strategies performs competitively with TVM. Our

experiment indicates a matching trend across versions compared to TVM, showing that our ELEVATE
strategies encode the same optimizations used in the TVM schedules. The most optimized parallel

RISE generated version improves the performance over the baseline by about 110×. The strategies

developed in an extensible style by composing individual rewrite steps using ELEVATE, are practically
usable and provide competitive performance for important high-performance code optimizations.

1https://github.com/halide/Halide/issues/2905

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

https://github.com/halide/Halide/issues/2905

Achieving High-Performance the Functional Way 92:25

naive

separated

scanline naive-par

separated
-par

scanline-par
0

30

60

90

120

R
u
n
ti
m
e

in
m
s

Halide

ELEVATE +RISE

Fig. 12. Performance evaluation of Halide and RISE generated code for the binomial filter application. Opti-

mization decisions for RISE are implemented as ELEVATE strategies.

6.4 Performance Comparison against Halide

Since the scheduling languages of Halide and TVM are very similar, we additionally performed a

third experiment comparing against the Halide compiler that is specialized in high-performance

code generation for image processing. Specifically, we implemented a binomial image processing

filter in RISE, corresponding to the example described in [Ragan-Kelley et al. 2013]. As with the

comparison against TVM, we used ELEVATE to describe three different optimization strategies (each

with a sequential and a parallel version), which are equivalent to three different schedule programs

using Halide. Optimizing the binomial filter application also requires to modify the algorithm in

Halide, similar to the array packing example in TVM. In contrast, we were again able to express all

optimizations using ELEVATE only.
Figure 12 shows the performance of the Halide and RISE generated code measured on an ARM

Cortex A7 quad-core2. We can see ś not surprisingly ś that the non-parallel versions on the left

are significantly slower than the parallel versions. The Halide generated code is 10-15% faster than

the RISE generated code. Improvements to the RISE code generator might close this gap in the

future. Crucially, we again observe the same trend for performance improvements across versions

demonstrating that our extensible and rewrite based approach is capable of achieving competitive

performance to state-of-the-art compilers used in production.

7 RELATED WORK

High-Performance Code Generation. Halide by Ragan-Kelley et al. [2018] introduced the concept

of schedules describing program optimizations separate from the algorithm describing the compu-

tation. Many other frameworks have adopted this concept in domains including machine learning

(TVM [Chen et al. 2018]), graph applications (GraphIt [Zhang et al. 2018]), and polyhedral compila-

tion (Tiramisu [Baghdadi et al. 2019], CHiLL [Chen et al. 2008; Hall et al. 2009], AlphaZ [Yuki et al.

2012], URUK [Girbal et al. 2006]).

These existing scheduling APIs are not designed as programming languages. They are often not

expressive enough to cover all optimizations of interest and instead provide a fixed set of ad-hoc

built-in primitives. In this work, we showed how to use ELEVATE to implement scheduling languages

from first principles as compositions of rewrite rules targeting the RISE language describing

computations.

There are many functional languages aimed towards high-performance code generation including

Futhark Henriksen et al. [2017], Accelerate [McDonell et al. 2013], Obsidian [Svensson et al. 2008],

and NOVA [Collins et al. 2014]. These projects either rely on hard-coded hand-tuned primitives

2The 4 LITTLE cores of a Samsung Exynos 5 Octa 5422

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

92:26 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

or fixed optimizations during compilation using code analysis and cost models. In contrast, our

functional approach allows extensible optimizations using rewrite rules and low-level patterns.

Rewriting in Compilers. Rewrite rules and rewriting strategies have also been used to build com-

pilers. The Glasgow Haskell Compiler [Peyton Jones et al. 2001] uses rewrite rules as a practical way

to optimize Haskell programs. [Visser et al. 1998] describe how to build program optimizers using

rewriting strategies however, on a significantly smaller scale not focusing on high-performance code

generation. Other areas include building interpreters [Dolstra and Visser 2002], instruction selec-

tion [Bravenboer and Visser 2002] or constant propagation [Olmos and Visser 2002]. Lift [Hagedorn

et al. 2018; Steuwer et al. 2015, 2017] showed how to use rewrite rules to generate high-performance

code targeting accelerators. Google recently introduced MLIR [Lattner et al. 2020] with declarative

rewrite rules to specify transformations for dialects.

Controlling the application of rewrite rules in compilers still largely relies on fixed built-in

heuristics. In this work, we showed how to use ELEVATE instead, allowing a more flexible and

practical approach towards using rewrite rules for describing optimizations in high-performance

compilers.

Term Rewriting and Strategy Languages. ELEVATE is inspired by existing strategy languages,

especially ELAN [Borovanský et al. 1998, 1996] and Stratego [Visser 2004; Visser et al. 1998], which

introduce combinators to support user-defined strategies in the context of term rewriting systems.

Similar rewriting systems include Maude [Clavel et al. 2002], PORGY [Andrei et al. 2011; Fernández

et al. 2011; Pinaud et al. 2017], ASF+SDF [van den Brand et al. 2001], OBJ3 [Goguen et al. 1987] and

TAMPR [Boyle et al. 1997]. Program transformations using rewrite rules and strategy languages

have since been used in different domains including reverse engineering [Chikofsky and II 1990],

refactoring [Fowler 1999], and obfuscation [Collberg et al. 1998]. Visser [Visser 2001b, 2005] and

Kirchner [Kirchner 2015] provide surveys covering term rewriting, strategy languages and their

application domains. Tactic languages including [Delahaye 2000] and [Felty 1993] are related to

strategy languages but are designed for specifying proofs in theorem provers.

8 CONCLUSION

In this paper, we presented a holistic functional approach for high-performance code generation.

We presented two functional languages: RISE for describing computations as compositions of data-

parallel patterns and ELEVATE for describing optimization strategies as composition of rewrite rules.

We showed that our approach successfully: separates concerns by truly separating the computation

and strategy languages; facilitates reuse of computational patterns as well as rewrite rules; enables
composability by building programs as well as rewrite strategies as compositions of a small number

of fundamental building blocks; allows reasoning about programs and strategies with well-defined

semantics and correctness proofs, and is explicit by empowering users to be in control over the

optimization strategy that is respected by our compiler. In contrast to existing imperative systems

with scheduling APIs such as Halide and TVM, programmers are not restricted to apply a set of

built-in optimizations but define their own optimization strategies. Our experimental evaluation

demonstrates that our holistic functional approach achieves competitive performance compared to

the state-of-the-art code generators Halide and TVM.

ACKNOWLEDGMENTS

We thank the entire RISE (rise-lang.org) and ELEVATE (elevate-lang.org) teams for their development

efforts. We thank our reviewers and our shepherd Stefan Muller for their valuable feedback. The

first author was financially supported by an NVIDIA Research Fellowship.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way 92:27

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https:

//www.tensorflow.org/ Software available from tensorflow.org.

Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet, and Bruno Pinaud. 2011. PORGY:

Strategy-Driven Interactive Transformation of Graphs. In Proceedings 6th International Workshop on Computing with

Terms and Graphs, TERMGRAPH 2011, Saarbrücken, Germany, 2nd April 2011. 54ś68. https://doi.org/10.4204/EPTCS.48.7

Robert Atkey, Michel Steuwer, Sam Lindley, and Christophe Dubach. 2017. Strategy Preserving Compilation for Parallel

Functional Code. CoRR abs/1710.08332 (2017).

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia

Suriana, Shoaib Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and

Portable Code. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2019, Washington, DC,

USA, February 16-20, 2019. 193ś205. https://doi.org/10.1109/CGO.2019.8661197

Paul Barham and Michael Isard. 2019. Machine Learning Systems are Stuck in a Rut. In HotOS. ACM, 177ś183.

Richard Bird and Oege de Moor. 1997. Algebra of Programming. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Christophe Ringeissen. 1998. An overview

of ELAN. Electr. Notes Theor. Comput. Sci. 15 (1998), 55ś70. https://doi.org/10.1016/S1571-0661(05)82552-6

Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Marian Vittek. 1996. ELAN: A logical

framework based on computational systems. Electr. Notes Theor. Comput. Sci. 4 (1996), 35ś50. https://doi.org/10.1016/

S1571-0661(04)00032-5

James M Boyle, Terence J Harmer, and Victor L Winter. 1997. The TAMPR program transformation system: Simplifying the

development of numerical software. In Modern software tools for scientific computing. Springer, 353ś372.

Martin Bravenboer and Eelco Visser. 2002. Rewriting Strategies for Instruction Selection. In Rewriting Techniques and

Applications, 13th International Conference, RTA 2002, Copenhagen, Denmark, July 22-24, 2002, Proceedings. 237ś251.

https://doi.org/10.1007/3-540-45610-4_17

Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating Haskell

array codes with multicore GPUs. In DAMP. ACM, 3ś14.

Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A framework for composing high-level loop transformations.

Technical Report. Citeseer.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,

Carlsbad, CA, USA, October 8-10, 2018. 578ś594. https://www.usenix.org/conference/osdi18/presentation/chen

Elliot J. Chikofsky and James H. Cross II. 1990. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software 7, 1

(1990), 13ś17. https://doi.org/10.1109/52.43044

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Jose F. Quesada.

2002. Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285, 2 (2002), 187ś243. https:

//doi.org/10.1016/S0304-3975(01)00359-0

Christian S. Collberg, Clark D. Thomborson, and Douglas Low. 1998. Manufacturing Cheap, Resilient, and Stealthy

Opaque Constructs. In POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, San Diego, CA, USA, January 19-21, 1998. 184ś196. https://doi.org/10.1145/268946.268962

Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea. 2014. NOVA: A Functional Language for

Data Parallelism. In ARRAY@PLDI. ACM, 8ś13.

David Delahaye. 2000. A Tactic Language for the System Coq. In LPAR (Lecture Notes in Computer Science), Vol. 1955.

Springer, 85ś95.

Eelco Dolstra and Eelco Visser. 2002. Building Interpreters with Rewriting Strategies. Electr. Notes Theor. Comput. Sci. 65, 3

(2002), 57ś76. https://doi.org/10.1016/S1571-0661(04)80427-4

Amy P. Felty. 1993. Implementing Tactics and Tacticals in a Higher-Order Logic Programming Language. J. Autom. Reasoning

11, 1 (1993), 41ś81.

Maribel Fernández, Hélène Kirchner, and Olivier Namet. 2011. A Strategy Language for Graph Rewriting. In Logic-Based

Program Synthesis and Transformation - 21st International Symposium, LOPSTR 2011, Odense, Denmark, July 18-20, 2011.

Revised Selected Papers. 173ś188. https://doi.org/10.1007/978-3-642-32211-2_12

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.4204/EPTCS.48.7
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1016/S1571-0661(05)82552-6
https://doi.org/10.1016/S1571-0661(04)00032-5
https://doi.org/10.1016/S1571-0661(04)00032-5
https://doi.org/10.1007/3-540-45610-4_17
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/52.43044
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1145/268946.268962
https://doi.org/10.1016/S1571-0661(04)80427-4
https://doi.org/10.1007/978-3-642-32211-2_12

92:28 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

Martin Fowler. 1999. Refactoring - Improving the Design of Existing Code. Addison-Wesley. http://martinfowler.com/books/

refactoring.html

Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006.

Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies. International

Journal of Parallel Programming 34, 3 (2006), 261ś317. https://doi.org/10.1007/s10766-006-0012-3

Joseph A. Goguen, Claude Kirchner, Hélène Kirchner, Aristide Mégrelis, José Meseguer, and Timothy C. Winkler. 1987. An

Introduction to OBJ 3. In Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, July 8-10, 1987,

Proceedings. 258ś263. https://doi.org/10.1007/3-540-19242-5_22

Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High performance

stencil code generation with lift. In Proceedings of the 2018 International Symposium on Code Generation and Optimization,

CGO 2018, Vösendorf / Vienna, Austria, February 24-28, 2018. 100ś112. https://doi.org/10.1145/3168824

Halide. 2020. Tutorial: Scheduling. https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy, and Malik Murtaza Khan. 2009. Loop transformation

recipes for code generation and auto-tuning. In International Workshop on Languages and Compilers for Parallel Computing.

Springer, 50ś64.

John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (2019),

48ś60.

Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. 2017. Futhark: purely functional

GPU-programming with nested parallelism and in-place array updates. In PLDI. ACM, 556ś571.

Hélène Kirchner. 2015. Rewriting Strategies and Strategic Rewrite Programs. In Logic, Rewriting, and Concurrency - Essays

dedicated to José Meseguer on the Occasion of His 65th Birthday. 380ś403. https://doi.org/10.1007/978-3-319-23165-5_18

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeis-

man, Nicolas Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law.

arXiv:cs.PL/2002.11054

Sebastiaan Pascal Luttik, Eelco Visser, et al. 1997. Specification of rewriting strategies. Universiteit van Amsterdam.

Programming Research Group.

Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier. 2013. Optimising purely functional

GPU programs. In ICFP. ACM, 49ś60.

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Karina Olmos and Eelco Visser. 2002. Strategies for Source-to-Source Constant Progagation. Electr. Notes Theor. Comput. Sci.

70, 6 (2002), 156ś175. https://doi.org/10.1016/S1571-0661(04)80605-4

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,

Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing by the rules: rewriting as a practical optimisation

technique in GHC. In 2001 Haskell Workshop (2001 haskell workshop ed.). ACM SIGPLAN.

Bruno Pinaud, Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, and Jason Vallet. 2017. PORGY : a Visual

Analytics Platform for System Modelling and Analysis Based on Graph Rewriting. In 17ème Journées Francophones

Extraction et Gestion des Connaissances, EGC 2017, 24-27 Janvier 2017, Grenoble, France. 473ś476. http://editions-

rnti.fr/?inprocid=1002327

Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris, Marc Levoy, Saman P. Amarasinghe,

and Frédo Durand. 2018. Halide: decoupling algorithms from schedules for high-performance image processing. Commun.

ACM 61, 1 (2018), 106ś115. https://doi.org/10.1145/3150211

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe. 2013.

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In

PLDI. ACM, 519ś530.

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating performance portable code using

rewrite rules: from high-level functional expressions to high-performance OpenCL code. In ICFP. ACM, 205ś217.

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016. Matrix multiplication beyond auto-tuning: rewrite-based

GPU code generation. In CASES. ACM, 15:1ś15:10.

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a functional data-parallel IR for high-performance

GPU code generation. In Proceedings of the 2017 International Symposium on Code Generation and Optimization, CGO

2017, Austin, TX, USA, February 4-8, 2017. 74ś85. http://dl.acm.org/citation.cfm?id=3049841

Joel Svensson, Mary Sheeran, and Koen Claessen. 2008. Obsidian: A Domain Specific Embedded Language for Parallel

Programming of Graphics Processors. In IFL (Lecture Notes in Computer Science), Vol. 5836. Springer, 156ś173.

TVM. 2020. How to optimize GEMM on CPU. https://docs.tvm.ai/tutorials/optimize/opt_gemm.html

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
https://doi.org/10.1007/s10766-006-0012-3
https://doi.org/10.1007/3-540-19242-5_22
https://doi.org/10.1145/3168824
https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html
https://doi.org/10.1007/978-3-319-23165-5_18
https://arxiv.org/abs/cs.PL/2002.11054
https://doi.org/10.1016/S1571-0661(04)80605-4
http://editions-rnti.fr/?inprocid=1002327
http://editions-rnti.fr/?inprocid=1002327
https://doi.org/10.1145/3150211
http://dl.acm.org/citation.cfm?id=3049841
https://docs.tvm.ai/tutorials/optimize/opt_gemm.html

Achieving High-Performance the Functional Way 92:29

Mark van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong, Merijn de Jonge, Tobias Kuipers, Paul Klint, LeonMoonen,

Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser. 2001. The ASF+SDF Meta-environment:

A Component-Based Language Development Environment. In Compiler Construction, 10th International Conference, CC

2001 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6,

2001, Proceedings. 365ś370. https://doi.org/10.1007/3-540-45306-7_26

Eelco Visser. 2001a. Stratego: A Language for Program Transformation Based on Rewriting Strategies. In Rewriting Techniques

and Applications, 12th International Conference, RTA 2001, Utrecht, The Netherlands, May 22-24, 2001, Proceedings. 357ś362.

https://doi.org/10.1007/3-540-45127-7_27

Eelco Visser. 2001b. A Survey of Strategies in Program Transformation Systems. Electr. Notes Theor. Comput. Sci. 57 (2001),

109ś143. https://doi.org/10.1016/S1571-0661(04)00270-1

Eelco Visser. 2004. Program transformation with Stratego/XT. In Domain-specific program generation. Springer, 216ś238.

Eelco Visser. 2005. A survey of strategies in rule-based program transformation systems. J. Symb. Comput. 40, 1 (2005),

831ś873. https://doi.org/10.1016/j.jsc.2004.12.011

Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Optimizers with Rewriting

Strategies. In Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),

Baltimore, Maryland, USA, September 27-29, 1998. 13ś26. https://doi.org/10.1145/289423.289425

Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12 (2015), 75ś84.

Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay V. Rajopadhye. 2012. AlphaZ: A System for

Design Space Exploration in the Polyhedral Model. In Languages and Compilers for Parallel Computing, 25th International

Workshop, LCPC 2012, Tokyo, Japan, September 11-13, 2012, Revised Selected Papers. 17ś31. https://doi.org/10.1007/978-3-

642-37658-0_2

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman P. Amarasinghe. 2018. GraphIt: a

high-performance graph DSL. PACMPL 2, OOPSLA (2018), 121:1ś121:30. https://doi.org/10.1145/3276491

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1016/S1571-0661(04)00270-1
https://doi.org/10.1016/j.jsc.2004.12.011
https://doi.org/10.1145/289423.289425
https://doi.org/10.1007/978-3-642-37658-0_2
https://doi.org/10.1007/978-3-642-37658-0_2
https://doi.org/10.1145/3276491

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Scheduling Languages for High-Performance Code Generation
	2.2 The Need for a Principled Way to Separate, Describe and Apply Optimizations

	3 RISE: A Language for Expressing Data-Parallel Computations
	3.1 A Brief Introduction to RISE
	3.2 A Functional Representation of Hardware Features
	3.3 Strategy Preserving Code Generation from RISE

	4 ELEVATE: A Language for Describing Optimization Strategies
	4.1 Language Features and Types
	4.2 Strategies
	4.3 Rewrite Rules as Strategies
	4.4 Strategy Combinators
	4.5 Traversals as Strategy Transformers
	4.6 RISE-Specific Traversal Strategies
	4.7 Complete Expression Traversal Strategies
	4.8 Normalization

	5 Expressing High-Performance Optimizations as Rewrite Strategies
	5.1 Basic Scheduling Primitives as ELEVATE Strategies
	5.2 Multi-dimensional Tiling as an ELEVATE Strategy
	5.3 Reordering as an ELEVATE Strategy
	5.4 Abstractions for Describing Locations in RISE

	6 Experimental Evaluation
	6.1 Optimizing Matrix Matrix Multiplication with ELEVATE Strategies
	6.2 Scalability and Overhead of Rewriting
	6.3 Performance Comparison against TVM
	6.4 Performance Comparison against Halide

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

