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A B S T R A C T

Developing efficient software for scientific applications with high
computing power demands, like physics simulations or deep learn-
ing, becomes increasingly difficult due to the ever-changing hard-
ware landscape consisting of multi-core CPUs, many-core GPUs,
and domain-specific accelerators. Domain-specific compilers pose
a viable solution to this problem. They provide convenient high-
level programming abstractions in the form of Domain-Specific
Languages (DSLs) while automatically performing the heavy lift-
ing of generating high-performance code for the target architecture.
However, this places the burden of high-performance code gen-
eration solely on the developers of the domain-specific compiler.
Typically, there is little to no reuse between domain-specific com-
pilers: A domain-specific compiler is specific to one domain and
is generally not reusable for generating code for another domain.
Therefore, developing a domain-specific compiler, especially its In-
termediate Representation (IR) and optimization passes, is difficult
because of the need to start from scratch for every new compiler.

This thesis presents a novel approach to achieving the benefits of
high-performance domain-specific compilation without the need to
develop domain-specific compilers. The key idea of our approach
is decomposing both domain-specific computations and their op-
timizations into a small set of generic building blocks. Using only
those building blocks, we develop a domain-agnostic compilation
approach to generating high-performance code. This approach al-
lows us to achieve the benefits of domain-specific compilation by
simply expressing both domain-specific computations and their
optimizations as compositions of generic building blocks.

The thesis starts with a case study highlighting the benefits and
potential of domain-specific compilation and demonstrates the draw-
backs of developing a domain-specific compiler from scratch. Specif-
ically, we show why domain-specific compilation is far superior
to using high-performance libraries or manually developing high-
performance implementations. At the same time, we highlight the
limitations of representing computations in a domain-specific com-
piler’s IR that is optimized using domain-specific optimization
strategies. We then show how to decompose both computations
and optimizations into generic building blocks, and discuss how to
re-compose those to express domain-specific computations and opti-
mizations. Finally, we show that our approach achieves competitive
performance to state-of-the-art domain-specific compilers without
having their drawbacks.
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1I N T R O D U C T I O N

Computer architectures are evolving rapidly to satisfy the growing
demand for high performance required by today’s scientific applica-
tion domains, including physics simulations or machine learning.
The current trend goes towards adding specialized hardware units
to classical multi-core CPU and many-core GPU architectures, pro-
viding the most common computational building blocks as built-in
hardware instructions. For example, Tensor Cores [110] on NVIDIA
GPUs or Google’s Tensor Processing Unit (TPU) [84] provide spe-
cialized instructions computing small low-precision matrix-matrix
multiplications to accelerate the training and inference of deep neu-
ral networks significantly. 1Dennard Scaling:

As transistors get smaller,
their power density stays
constant. [43]

Developing efficient programs for the ever-changing hardware
landscape becomes increasingly difficult. Due to the end of Den-

2Moore’s Law:
The number of transistors
in an integrated circuit
doubles about every two
years. [106]

nard scaling1 [43] and Moore’s Law2 [106], all of today’s high-
performance architectures are highly parallel and contain thousands
of cores. For example, NVIDIA’s RTX 6000 contains 4608 CUDA cores,
576 Tensor Cores, and 72 RT (Ray Tracing) Cores that achieve a peak
of 16.3 TFLOPS single-precision performance.

achieving high performance on parallel hardware

Efficient software achieving practical peak performance on parallel
architectures needs to manage a complex multi-layered compute
and memory hierarchy. Programmers have to efficiently partition
the computational task among thousands of threads running at the
same time in parallel. Additionally, the processed data must be
carefully transferred from the slow off-chip memory to fast registers
via a deep hierarchy of memory levels to provide enough work to
each thread. On multi-core CPUs, this memory hierarchy consists
of multiple caches whose different replacement policies affect how
programmers need to optimize memory access patterns. On many-
core GPUs, this hierarchy consists of both caches and self-managed
shared memory, which requires carefully synchronizing groups of
threads sharing read and write access.

Typically, high-performance programs are written in low-level
programming languages like OpenCL or CUDA and include in-
line assembly to access the functionality of specialized instructions.
Developing these programs requires intimate knowledge of the hard-
ware and is hard even for performance engineers and, therefore, not
manageable for domain-scientists like machine learning experts.

1



2 introduction

To make the high performance accessible for domain-scientists,
hardware vendors provide manually tuned domain-specific libraries
like NVIDIA’s cuBLAS and cuDNN or Intel’s MKL. These libraries
contain high-performance implementations, carefully tuned by per-
formance engineers, of the most common computational building
blocks occurring in particular application domains such as matrix-
matrix multiplication or convolution.

developing high-performance libraries The task of the
library programmer is very challenging: For every building block of
the library, say Generalized Matrix Multiplication (GEMM), multi-
ple high-performance implementations have to be provided for all
commonly used architectures, input sizes, varying precision, and
storage formats.

For example, in the domain of dense linear algebra, cuBLAS is
tuned differently for multiple NVIDIA GPU architectures ranging
from Kepler (introduced in April 2012) to Ampere (introduced in
May 2020). Every architecture comes with multiple chips with differ-
ent characteristics to consider in library implementations, ranging
from embedded Jetson boards used in autonomous vehicles up to
server class Tesla GPUs used in data-centers and supercomputers.
Additionally, depending on the problem size, different algorithmic
implementations are required to achieve the highest performance
possible: For GEMM, in case of extreme input sizes (e.g., where
the M and N dimension of the input matrices are small like in
implicit GEMM kernels (M = N = 64,K = 401408)), the only way to
assign enough work to all threads of the GPU is to parallelize the
K-dimension as well. This additional parallelization is not necessary
for more regular input sizes like large square matrices. Various im-
plementations for different precision need to be provided, including
half-, single- and double-precision. The storage formats (row-major,
column-major) of the input matrices must also be considered be-
cause they have a significant impact on performance due to different
memory access patterns. To make matters worse, high-performance
library implementations usually need to be provided as, or at least
partially use, optimized low-level assembly code because important
performance-critical architectural features are only exposed at this
API level.

Clearly, providing and maintaining high-performance libraries
is only feasible for the most common and most essential building
blocks of application domains and requires significant effort from
multiple performance engineers.
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1.1 a solved problem : domain-specific compilation

Figure 1.2: Overview of
domain-specific compila-
tion.

Domain-specific compilation is a viable solution to the problem of
providing high-level abstractions to domain-scientists while achiev-
ing high-performance on modern hardware. Figure 1.2 shows an
overview of the process of domain-specific compilation. The key
idea is the separation of concerns: The application developer, usu-
ally a domain-scientist, solely focuses on expressing computations
in a domain-specific program using high-level programming ab-
stractions provided by a domain-specific language (DSL), without
optimizing the program for performance. Instead of the necessity to
have human experts who optimize and fine-tune high-performance
programs, a domain-specific compiler generates these automati-
cally from the high-level DSL program. As research has shown, this
approach works well across multiple domains such as databases
(SQL [25]) or machine learning (e.g., TensorFlow [2, 3], TVM [29]).

a motivating example On the high abstraction level, domain-
scientists express computations using familiar abstractions. For
example, in the domain of machine learning, the TVM DSL and
compiler allows a machine learning expert to define layers of a
neural network as simple mathematical expressions. Figure 1.3 (top)
shows a program defining a matrix multiplication computation us-
ing TVM’s high-level DSL. First, the two input matrices A and B are
defined in lines 2 and 3. Then, the matrix multiplication is specified
in lines 4-7 by computing the dot-product of the rows of matrix A

and the columns of matrix B.
Figure 1.3 (bottom) shows CUDA code targeting NVIDIA GPUs

generated by the TVM compiler using the high-level matrix mul-
tiplication specification. This low-level code expresses the same
computation as the high-level domain-specific program (a matrix
multiplication); however, it is significantly longer and more com-
plicated because it is optimized to run efficiently on the target
architecture. Specifically, the CUDA implementation performs the
computation using multiple threads (identified by threadIdx and
blockIdx) running in parallel. In order to achieve high-performance,
the memory hierarchy of the GPU is used by allocating multiple tem-
porary buffers (lines 2-5), and data is fetched into shared memory
(lines 12-22) and registers (lines 25-30) before the result is com-
puted in lines 32-39. This implementation explicitly targets modern
NVIDIA GPUs and computes the results using the Tensor Cores by
leveraging the Warp-level Matrix Multiply Accumulate (WMMA)
API [114] for efficiently computing small matrix multiplications.

Generating and understanding this parallel program requires un-
derstanding the CUDA programming model and knowledge of GPU
architectures. Compiling the high-level TVM program to parallel
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Figure 1.3: Expressing matrix multiplication in a high-level Domain-Specific Lan-
guage (top), such as the one provided by TVM, liberates domain scientists from
writing low-level high-performance code (bottom), which is instead automatically
generated by the TVM domain-specific compiler.

CUDA code, and thereby restricting its execution to NVIDIA GPUs
only, is just one of many possible options. To target different hard-
ware, the TVM compiler can generate OpenMP code targeting multi-
core CPUs or OpenCL code targeting various kinds of hardware ac-
celerators. Generally, domain-specific compilation liberates domain-
scientists from learning these low-level programming models. Due
to this separation of concerns, domain-specific compilation is a
popular technique for generating high-performance programs.
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Figure 1.4: Overview of domain-specific compilation: A domain-scientist writes a
program using a high-level domain-specific language. This program is compiled
by a domain-specific compiler that generates a high-performance program that
runs on the hardware.

1.2 the new challenge : domain-specific compilers

While the use of DSLs and domain-specific compilers provides a
helpful solution for the domain-scientist requiring high-performance
implementations, this solution is costly in terms of compiler devel-
opment. Typically, there is little to no reuse between domain-specific
compilers almost by definition: A domain-specific compiler is spe-
cific to one domain and cannot be reused for generating code of
another domain. This lack of reusability makes developing a domain-
specific compiler difficult because of the need to start from scratch
for every new compiler. This approach is not sustainable, given the
number of application domains and the ever-growing hardware
landscape.

Figure 1.4 shows the three steps of compiling a DSL source pro-
gram into a high-performance program. The compiler front-end
lowers a program written in a DSL into a compiler-internal inter-
mediate representation (IR) more suitable for applying program
transformations and code generation. In the middle-end, sometimes
also called the optimizer, the compiler applies program transforma-
tions to the IR, aiming to optimize the performance of the program
to be generated. Finally, the compiler back-end uses the optimized
IR to generate a high-performance program.

In order to develop a domain-specific compiler, two questions
need to be answered: (1) How to represent domain-specific com-
putations, and (2) how to encode and apply optimizations on this
representation? These questions drive the design of the two most
critical components of a domain-specific compiler: its intermediate
representation (IR) and the optimizations applied to this IR for generat-
ing high-performance code. The development of the front-, middle-
and back-end depends critically on the design decisions made for
these two components.

Every time a new domain-specific compiler is built, as of today,
that is every time a new application domain is targeted, or a new
hardware architecture needs to be supported, these two core compo-
nents must be re-designed from scratch. While there are approaches
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like Delite [170] and AnyDSL [94] aiming to simplify the develop-
ment of domain-specific compilers, these approaches often focus

Figure 1.5: A high-level,
graph-based IR repre-
senting machine learn-
ing computations. Pro-
gressively applying ma-
chine learning specific
optimizations as graph-
substitutions allows to
reduce the overall num-
ber of layers.

on supporting multiple application domains but only target one
specific hardware architecture. However, due to rapidly changing
hardware landscapes, e.g., NVIDIA alone has introduced four dif-
ferent new GPU architectures since the beginning of the work on
this thesis, supporting new hardware architectures is as important
as supporting new application domains. In this thesis, we argue
that domain-specific compilation is achievable without re-building
domain-specific compilers every time by solving two main chal-
lenges defined and discussed in the following.

1.2.1 The Intermediate Representation Challenge

The Intermediate Representation (IR) used in an optimizing domain-
specific compiler needs to be developed with specific goals in mind,
affecting the development of the compiler’s front-, middle- and back-
end. First of all, the IR must be able to represent all computations
expressible in the high-level DSL. Ideally, the IR is extensible and
flexible enough such that multiple front-ends can lower different
DSLs into the same IR. Second, the IR must be suitable for the appli-
cation of transformations aiming to optimize the performance when
targeting various hardware devices. Finally, the IR must be suitable
for code generation to eventually produce a high-performance pro-
gram written in a lower-level programming language like CUDA or
the assembly language of the targeted hardware device.

In the following, we introduce state-of-the-art IRs used in optimiz-
ing compilers today and identify problems with their design.

high-level intermediate representations Figure 1.5
shows an example of a high-level graph-based IR, as introduced
in [83]. These are popular in machine learning compilers and model
computations performed in a deep neural network as a graph of
connected layers. Each node represents a computation to perform
on its input tensors, and each edge in the IR represents a data de-
pendency. Machine learning specific operations like conv, add, and
relu are directly encoded as built-in nodes in the IR. For exam-
ple, the monolithic conv-relu node represents a fused version of
the conv and the relu node. Specifically, it represents applying the
convolution computation to the input tensor followed by applying
the element-wise Rectified Linear Unit (ReLU) activation function
defined as x = max(0, x).

Applying machine learning specific optimizations to this IR is
conceptually straight-forward because known transformations can
be encoded as graph transformations. Figure 1.5 shows the applica-
tion of machine learning specific optimizations to the IR graph by
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progressively substituting parts of the graph with equivalent sub-
graphs. One example for exploiting the domain-specific knowledge
in optimizing machine learning computations is that the filter of a
convolution (shape 1× 1 in Figure 1.5) can be enlarged by padding
it with zeros (to, for example, shape 3× 3). This transformation en-
ables the subsequent fusion of two conv nodes and the fusion of conv
with multiple other layers. Modifying and fusing nodes of the initial
IR graph allows the decrease of the total number of required layers
and thus computations to perform, leading to higher performance.

However, since domain-specific computations are built-in abstrac-
tions in the high-level IRs, an IR in the domain of machine learning is
naturally highly specialized for that domain. Reusing the same high-
level IR in other compilers targeting different application domains
is inherently difficult.

Additionally, high-performance code generation directly from
this IR is exceptionally challenging because of the large abstrac-
tion gap between the high-level IR and the low-level code that the
domain-specific compiler eventually needs to generate. Therefore,
domain-specific compilers using high-level IRs often rely on simply
calling high-performance library routines (such as NVIDIA’s cuDNN
for computing the conv layer) whenever possible. This approach sig-
nificantly complicates the extension and reuse of the IR even within
the same domain, as noted in [11] by two of the original authors of
TensorFlow, one of the most popular machine learning compilers
that also uses a high-level graph-based IR.

low-level intermediate representations As discussed
in the previous paragraph, encoding domain-specific computations
as built-in high-level abstractions in the IR prevents reuse and limits
extensibility. Instead, another possibility is to represent domain-
specific computations using a low-level IR.

The LLVM Compiler Infrastructure Project [92], for example, pro-
vides the low-level LLVM IR that is widely used in industry and
academia, for example, in many general-purpose compilers includ-
ing clang and the compiler for the Swift programming language.
The LLVM IR is a Static Single Assignment (SSA) [158], text-based
IR providing low-level operations close to machine-level assembly
instructions. It is designed to provide the capability of representing
‘all‘ high-level languages cleanly [135], which facilitates the reuse of
LLVM IR for representing computations of all kinds of application
domains. There exist multiple hundreds of optimization passes for
transforming and optimizing LLVM IR. At the same time, code gen-
eration for different hardware devices is straight-forward due to its
low-level assembly-like nature. In fact, LLVM already provides mul-
tiple back-ends, often officially supported by the hardware vendors,
for various hardware devices.
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1 ; ... 39 lines left out

2 28: ; preds = %25

3 %29 = add nsw i64 %27, %24

4 %30 = getelementptr inbounds float, float* %0, i64 %29

5 %31 = load float, float* %30, align 4, !tbaa !4

6 %32 = mul nsw i64 %27, %12

7 %33 = getelementptr inbounds float, float* %1, i64 %32

8 %34 = load float, float* %33, align 4, !tbaa !4

9 %35 = fmul float %31, %34

10 %36 = fadd float %26, %35

11 store float %36, float* %23, align 4, !tbaa !4

12 br label %37

13 ; ... 58 lines left out

Listing 1.1: LLVM IR code representing the conv layer of a deep neural network.

Listing 1.1 shows a snippet of LLVM IR representing the conv layer
of a deep neural network. Representing a complete neural network
may require thousands of LLVM IR code lines, due to being more
explicit compared to the high-level graph-based IR. In the previous
example showing the high-level IR, the conv layer was represented
by a single node in the computation graph. In LLVM IR, however,
representing the same computation requires 108 lines of code. For
example, lines 9-10 explicitly compute parts of the convolution
computation, multiplying the input tensors elements (%31 - line 5)
with the weights (%34 - line 8) followed by an accumulation (%36 -
line 10). The information that a convolution computes a weighted
sum of local neighborhoods in an input tensor is implicitly encoded
by merely having a single conv node in the high-level IR. Lowering
a DSL program into a high-level graph-based IR is usually straight-
forward, e.g., both might contain built-in abstractions for conv layers.
However, lowering a DSL into the low-level LLVM IR is significantly
more challenging due to a notable gap in abstraction.

Additionally, even though LLVM IR is capable of representing com-
putations occurring in multiple domains, using it for domain-specific
compilation is complicated and impractical: Applying domain-
specific optimizations requires to re-discover domain knowledge,
which is lost during the process of lowering a high-level DSL to low-
level LLVM IR. For example, applying the domain-specific filter en-
largement transformation mentioned above, requires re-discovering
that the hundreds of lines of LLVM IR represent the conv layer.

hierarchical intermediate representations Using only
one level of abstraction in the IR of a domain-specific compiler
quickly leads to problems or severe limitations for domain-specific
compilation. As a last example, we consider using a hierarchy of
IRs for domain-specific compilation, each providing a different ab-
straction level, mitigating the drawbacks discussed in the previous
examples.
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Figure 1.7: Overview of the Tensor Comprehensions domain-specific compiler for
high-performance machine learning code generation. (Fig. inspired by [153].)

Figure 1.7 shows the internal configuration of the Tensor Compre-
hensions (TC) [175, 176] domain-specific compiler targeting machine
learning computations, introduced by Facebook in 2018. On the
highest abstraction level, TC uses the same graph-based IR as the
domain-specific Halide compiler [141] initially designed for image
processing pipelines. This IR is suitable for expressing machine learn-
ing and linear algebra computations, and we will discuss Halide’s
domain-specific compilation approach in more detail in the follow-
ing chapters. The IR is then lowered into a loop-based polyhedral
IR. This IR operates on affine loop nests by transforming them into
a mathematical polyhedron representation [39] suitable for vari-
ous loop optimizations like tiling to improve locality in memory
accesses. From this abstraction level, there are multiple paths de-
pending on what hardware to target. If TC is used for targeting
multi-core CPUs, for example, then the polyhedral IR is lowered
into LLVM IR. This way, using a hierarchical IR composition for
domain-specific compilation, the high-level DSL code (in this case, a
machine learning expression) is progressively lowered until eventu-
ally machine-executable code is generated.

Constructing domain-specific compilers with hierarchical IRs al-
lows to reuse parts of existing domain-specific compilers, but it
requires significant engineering effort. Mitigating the drawbacks of
having only a single abstraction level comes at the cost of managing
multiple layers of different IRs. Instead of merely writing one middle-
and back-end to optimize the IR and to generate a high-performance
program, many middle- and back-ends have to be developed and
maintained to connect the IR layers. Furthermore, now the exact
composition of the IR hierarchy is domain-specific and needs to be
adjusted when constructing a new compiler targeting a different
application domain.
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Nevertheless, domain-specific compilation significantly benefits
from a hierarchical IR structure offering multiple levels of abstrac-
tions. Google recently introduced the Multi-Layer Intermediate Rep-
resentation (MLIR) [93], which is now part of the LLVM Compiler
Infrastructure Project, aiming to simplify the development of hierar-
chical IRs and the management of lowering progressively between
IRs. Specifically, MLIR allows compiler developers to define IRs as
so-called Dialects and already provides an LLVM IR and a polyhe-
dral dialect. Compiler developers can define their own dialects and
transformations for implementing the lowering of dialects. With
MLIR, managing multiple IRs (now dialects) in the same framework
becomes significantly easier. However, to achieve domain-specific
compilation, the concrete stack of IRs remains domain-specific and,
therefore, has to be adjusted when targeting different domains.

summary : the ir challenge In the previous paragraphs,
we discussed different approaches to designing IRs for optimizing
compilers and their limitations for domain-specific compilation.
High-level domain-specific IRs prevent reuse across application
domains. At the same time, low-level IRs complicate the lowering
of DSLs, due to a large gap in abstraction, and they complicate
developing optimizations, because domain knowledge has to be
rediscovered. Constructing hierarchical IRs allows the reuse of single
IR layers, but requires managing the progressive lowering between
abstraction levels and requires the construction of new hierarchies
for different application domains. Due to the inherent domain-
specific nature of the IRs or the domain-specific composition of
multiple IR layers used in state-of-the-art domain-specific compilers,
extending and reusing IRs is still difficult.

Generally, the Intermediate Representation (IR) challenge is sum-
marized as the following problem:

How to define an IR for high-performance domain-specific compilation
that can be reused across application domains and hardware architectures
while providing multiple levels of abstraction?

In Chapter 3, we will analyze the advantages of defining a domain-
specific IR. We show the potential of high-performance domain-
specific compilation by targeting modern NVIDIA GPUs and gener-
ating code that is competitive and even outperforms code tuned by
human experts. In Chapter 4 of this thesis, we discuss and evaluate
a novel approach towards using and extending a domain-agnostic IR
for high-performance domain-specific compilation addressing the
IR challenge.
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1.2.2 The Optimization Challenge

Optimizing programs is essential for many application domains.
Programs can be optimized with respect to different metrics, in-
cluding energy efficiency or memory usage. In this thesis, we focus
on optimizations aiming to improve a program’s execution time,
i. e., lowering the time it takes to execute a program on the targeted
hardware device. The difference in execution time between an unop-
timized program and its optimized version is often multiple orders
of magnitude. For example, in the domain of machine learning, it is
required to train deep neural networks before they can be used in
the inference phase. The training phase is by far more time-intensive
and requires to repetitively perform deep pipelines of computations
like matrix multiplications on vast quantities of data. Optimizing
deep learning computations allows us to decrease the required train-
ing time from months to hours or minutes. In order to achieve this
improvement in performance, many optimizations must be applied
to the program.

example : applying high-performance gpu optimizations

Optimizing programs for high-performance is a challenging task.
Gradually improving the performance of an initial—correct but
simple—implementation quickly leads to an explosion in both code
size and complexity. For example, the following listing shows a
simple matrix multiplication program written in CUDA.

1 __global__ void matmul(float *A, float *B, float *C, int K, int M, int N) {

2 int x = blockIdx.x * blockDim.x + threadIdx.x;

3 int y = blockIdx.y * blockDim.y + threadIdx.y;

4

5 float acc = 0.0;

6 for (int k = 0; k < K; k++) {

7 acc += A[y * M + k] * B[k * N + x];

8 }

9 C[y * N + x] = acc;

10 }

Here, every thread computes a single element of the output matrix C

by computing the dot-product of a row of the A matrix and a column
of the B matrix. This code is arguably easy to understand, given
some basic knowledge about the CUDA programming model and
GPU architectures. We will introduce both in Chapter 2. The shown
code computes the correct result if the number of threads launched
matches the size of the output to compute.

However, the performance achieved by this implementation when
executed on a modern GPU is far from optimal because it has not
been particularly optimized. For achieving high performance close
to the practically achievable peak-performance of modern GPUs, the
source code has to be significantly modified.
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1 __global__ optimized_matmul(const __half *A, const __half *B, __half *C,

2 int K, int M, int N) {

3 // ... 164 lines skipped

4 #pragma unroll

5 for (int mma_k = 1; mma_k < 4; mma_k++) {

6

7 // load A from shared memory to register file

8 #pragma unroll

9 for (int mma_m = 0; mma_m < 4; mma_m++) {

10 int swizzle1 = swapBits(laneLinearIdx, 3, 4);

11 laneIdx = make_uint3(

12 ((swizzle1 % 32) % 16), (((swizzle1 % 32)/16) % 2), (swizzle1/32));

13 if (laneIdx.x < 16) { if (laneIdx.y < 2) {

14 const int4 * a_sh_ptr = (const int4 *) &A_sh[((((warpIdx.y*64) +

15 (mma_m*16)+laneIdx.x))*32)+((((((laneLinearIdx>>1))&3)^mma_k)*8))];

16 int4 * a_rf_ptr = (int4 *) &A_rf[(mma_k & 1)][mma_m][0][0];

17 *a_rf_ptr = *a_sh_ptr; }}}

18

19 // load B from shared memory to register file

20 #pragma unroll

21 for (int mma_n = 0; mma_n < 4; mma_n++) {

22 int swizzle2 = swapBits((swapBits(laneLinearIdx, 2, 3)), 3, 4);

23 laneIdx = make_uint3(

24 ((swizzle2%32)%16), (((swizzle2%32)/16)%2), (swizzle2/32));

25 if (laneIdx.y < 2) { if (laneIdx.x < 16) {

26 const int4 * b_sh_ptr = (const int4 *) &B_sh[

27 ((((warpIdx.x*64) + (mma_n*16) + laneIdx.x)) * 32) +

28 (((((((swapBits(laneLinearIdx,2,3))>>1))&3)^mma_k)*8))];

29 int4 * b_rf_ptr = (int4 *) &B_rf[(mma_k & 1)][0][mma_n][0];

30 *b_rf_ptr = *b_sh_ptr; }}}

31

32 // compute matrix multiplication using tensor cores

33 #pragma unroll

34 for (int mma_m = 0; mma_m < 4; mma_m++) {

35 #pragma unroll

36 for (int mma_n = 0; mma_n < 4; mma_n++) {

37 int * a = (int *) &A_rf[((mma_k - 1) & 1)][mma_m][0][0];

38 int * b = (int *) &B_rf[((mma_k - 1) & 1)][0][mma_n][0];

39 float * c = (float *) &C_rf[mma_m][mma_n][0];

40

41 asm volatile( \

42 "mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32\n" \

43 " {%0, %1, %2, %3, %4, %5, %6, %7}, \n" \

44 " {%8, %9}, \n" \

45 " {%10, %11}, \n" \

46 " {%0, %1, %2, %3, %4, %5, %6, %7}; \n" \

47 : "+f"(c[0]), "+f"(c[2]), "+f"(c[1]), "+f"(c[3])

48 , "+f"(c[4]), "+f"(c[6]), "+f"(c[5]), "+f"(c[7])

49 : "r"(a[0]), "r"(a[1])

50 , "r"(b[0]), "r"(b[1]));

51 asm volatile( \

52 "mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32\n" \

53 " {%0, %1, %2, %3, %4, %5, %6, %7}, \n" \

54 " {%8, %9}, \n" \

55 " {%10, %11}, \n" \

56 " {%0, %1, %2, %3, %4, %5, %6, %7}; \n" \

57 : "+f"(c[0]), "+f"(c[2]), "+f"(c[1]), "+f"(c[3])

58 , "+f"(c[4]), "+f"(c[6]), "+f"(c[5]), "+f"(c[7])

59 : "r"(a[2]), "r"(a[3])

60 , "r"(b[2]), "r"(b[3])); }}}

61 // ... 95 lines skipped

62 }

Listing 1.2: CUDA code showing an optimized matrix multiplication
implementation targeting modern NVIDIA GPUs. (321 lines of code in total.)



1.2 the new challenge : domain-specific compilers 13

Listing 1.2 shows a snippet of an optimized matrix multiplication
implementation targeting NVIDIA GPUs with Tensor Cores. This
code achieves performance competitive with hand-tuned assem-
bly implementations provided in libraries like cuBLAS. This high
performance is only achievable by carefully applying algorithmic
optimizations (e.g., computing small matrix multiplications instead
of dot-products), as well as optimizations affecting the use of the
multi-layer memory and compute hierarchy. For example, this im-
plementation performs vectorized loads and stores to move data as
efficiently as possible from the GPU’s shared memory to the fast on-
chip register file (lines 7-30). Once the matrices are arranged using
a specific memory layout in the GPU’s register file, inline assembly
instructions are used (lines 42 and 52) to compute small matrix
multiply operations by calling specialized Tensor Core instructions.

Only the perfect orchestration of where, when, and how to apply
these and more optimizations leads to the desired performance
improvement. Unfortunately, this improvement comes at the cost
of an increase in code size of about 30× and a significant increase
in code complexity. Experimenting with, and applying different
optimizations to adjust the code for targeting other hardware ar-
chitectures is a challenging and immensely time-intensive process,
even for experts. Due to these reasons, optimizing compilers aim to
automate this process. Two key aspects are essential when designing
optimizations for optimizing compilers targeting high-performance
code generation: How to encode and how to apply optimizations as
transformations on the IR? In the following, we briefly analyze how
traditional and domain-specific optimizing compilers encode and
apply optimizations and then identify problems preventing the cur-
rent approaches from achieving high-performance domain-specific
compilation.

general-purpose optimizing compilers General-purpose
compilers like clang [133] typically encode optimizations as so-called
passes. Each pass either encodes a specific optimization or performs
an analysis creating meta-data to enable optimizations in subsequent
passes. Passes are applied in a specific order, predetermined by
the compiler developer, and the compilers expose different pass
arrangements to the user as so-called code generation options.

Listing 1.3 shows the pass arrangement for clang’s most common
option for generating high-performance code: -O3. Each of the 55

unique names in the listing stands for one pass to be applied, and
the order of appearance reflects the order of pass application. Note
that many passes, for example -basiccg, are applied multiple times,
and in total, 251 passes are applied in this sequence. The clang

documentation describes the -O3 code generation option as follows:
-O3: Like -O2, except that it enables optimizations that take longer to per-
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Pass Arguments: -targetlibinfo -tti -tbaa -scoped-noalias -assumption-cache-tracker -profile-summary-
info -forceattrs -inferattrs -domtree -callsite-splitting -ipsccp -called-value-propagation -
attributor -globalopt -domtree -mem2reg -deadargelim -domtree -basicaa -aa -loops -lazy-branch-
prob -lazy-block-freq -opt-remark-emitter -instcombine -simplifycfg -basiccg -globals-aa -prune
-eh -inline -functionattrs -argpromotion -domtree -sroa -basicaa -aa -memoryssa -early-cse-
memssa -speculative-execution -basicaa -aa -lazy-value-info -jump-threading -correlated-
propagation -simplifycfg -domtree -aggressive-instcombine -basicaa -aa -loops -lazy-branch-prob
-lazy-block-freq -opt-remark-emitter -instcombine -libcalls-shrinkwrap -loops -branch-prob -
block-freq -lazy-branch-prob -lazy-block-freq -opt-remark-emitter -pgo-memop-opt -basicaa -aa -
loops -lazy-branch-prob -lazy-block-freq -opt-remark-emitter -tailcallelim -simplifycfg -
reassociate -domtree -loops -loop-simplify -lcssa-verification -lcssa -basicaa -aa -scalar-
evolution -loop-rotate -licm -loop-unswitch -simplifycfg -domtree -basicaa -aa -loops -lazy-
branch-prob -lazy-block-freq -opt-remark-emitter -instcombine -loop-simplify -lcssa-
verification -lcssa -scalar-evolution -indvars -loop-idiom -loop-deletion -loop-unroll -mldst-
motion -phi-values -basicaa -aa -memdep -lazy-branch-prob -lazy-block-freq -opt-remark-emitter
-gvn -phi-values -basicaa -aa -memdep -memcpyopt -sccp -demanded-bits -bdce -basicaa -aa -loops
-lazy-branch-prob -lazy-block-freq -opt-remark-emitter -instcombine -lazy-value-info -jump-
threading -correlated-propagation -basicaa -aa -phi-values -memdep -dse -loops -loop-simplify -
lcssa-verification -lcssa -basicaa -aa -scalar-evolution -licm -postdomtree -adce -simplifycfg
-domtree -basicaa -aa -loops -lazy-branch-prob -lazy-block-freq -opt-remark-emitter -
instcombine -barrier -elim-avail-extern -basiccg -rpo-functionattrs -globalopt -globaldce -
basiccg -globals-aa -float2int -domtree -loops -loop-simplify -lcssa-verification -lcssa -
basicaa -aa -scalar-evolution -loop-rotate -loop-accesses -lazy-branch-prob -lazy-block-freq -
opt-remark-emitter -loop-distribute -branch-prob -block-freq -scalar-evolution -basicaa -aa -
loop-accesses -demanded-bits -lazy-branch-prob -lazy-block-freq -opt-remark-emitter -loop-
vectorize -loop-simplify -scalar-evolution -aa -loop-accesses -lazy-branch-prob -lazy-block-
freq -loop-load-elim -basicaa -aa -lazy-branch-prob -lazy-block-freq -opt-remark-emitter -
instcombine -simplifycfg -domtree -loops -scalar-evolution -basicaa -aa -demanded-bits -lazy-
branch-prob -lazy-block-freq -opt-remark-emitter -slp-vectorizer -opt-remark-emitter -
instcombine -loop-simplify -lcssa-verification -lcssa -scalar-evolution -loop-unroll -lazy-
branch-prob -lazy-block-freq -opt-remark-emitter -instcombine -loop-simplify -lcssa-
verification -lcssa -scalar-evolution -licm -lazy-branch-prob -lazy-block-freq -opt-remark-
emitter -transform-warning -alignment-from-assumptions -strip-dead-prototypes -globaldce -
constmerge -domtree -loops -branch-prob -block-freq -loop-simplify -lcssa-verification -lcssa -
basicaa -aa -scalar-evolution -block-freq -loop-sink -lazy-branch-prob -lazy-block-freq -opt-
remark-emitter -instsimplify -div-rem-pairs -simplifycfg -verify

Listing 1.3: Passes applied in the clang compiler using -O3.

form or that may generate larger code (in an attempt to make the program
run faster) [134]. Note how this description is intentionally vague
because it is hard (if not impossible) to reason about the effect of
applying -O3 to an arbitrary program. To understand how an input
program is transformed, one has to understand how every single
pass is transforming the IR. Due to similarly imprecise or missing
pass documentation, it is usually impossible to gain a precise un-
derstanding of the transformations without studying the low-level
pass implementations themselves. For example, 31 out of the 55

passes used in -O3 are not documented. The existing documentation
is again vague; for instance the one for adce: ADCE aggressively tries
to eliminate code [136].

The problems of selecting which pass to apply and in which order
to apply them are known as the Phase Selection and Phase Ordering
problems. Existing pass arrangements are based on best practices
and heuristics and aim to improve the performance for the majority
of input programs as a one-size-fits-all solution. For improving
the performance of domain-specific computations, however, we
desire precise control over where and how optimizations are applied.
Modifying pass arrangements like clangs -O3 code generation option
is not sustainable for incorporating and applying domain-specific
optimizations.
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controlling optimizations using schedule languages

Since general-purpose optimizing compilers often do not deliver
the required performance for domain-specific computations, many
high-performance implementations are still developed manually in
low-level code. Intertwining the computation with optimizations

Figure 1.9: Overview of
schedule-based compi-
lation using Halide. A
domain-scientist writes
an algorithm describing
the computation to
perform. A performance
engineer additionally
writes a separate
schedule describing the
optimizations to apply
to the algorithm. The
algorithm and schedule
are used by the Halide
compiler to generate
a high-performance
program for the target
hardware.

complicates porting implementations to different hardware archi-
tectures. Halide [141], a domain-specific compiler developed for
generating high-performance code for image processing pipelines,
pioneered a new schedule-based approach to domain-specific com-
pilation. A schedule-based compiler allows the separation of the
program describing the computation (called algorithm) from the op-
timizations applied to it that are described in a separate program,
the so-called schedule.

Figure 1.9 shows an overview of the schedule-based domain-
specific compilation approach. The domain-scientist writes an algo-
rithm in a high-level DSL. In addition, the compiler is provided with
a schedule (in a separate scheduling language) describing the opti-
mizations to apply. The domain-scientist can provide this schedule,
or it can be refined or developed separately by a performance engi-
neer for the targeted hardware architecture. In the case of Halide, the
scheduling language contains primitives encoding common domain-
specific optimizations that programmers typically apply to image
processing pipelines. In addition to image processing, Halide is also
capable of optimizing dense linear algebra computations such as
matrix multiplications.

Listing 1.4 shows an algorithm expressing matrix multiplication
in Halide as well as a schedule applying optimizations for targeting
NVIDIA GPUs. Halide’s implementation is embedded in C++, so
the syntax used here is C++. Lines 2–4 define the matrix-matrix
multiplication computation: A and B are multiplied by performing
the dot product for each coordinate pair (x,y). The dot product
is expressed as pairwise multiplications followed by the reduction
over domain r using the += operator (line 3).

The other lines in Listing 1.4 define the schedule specifying the
optimizations to be performed. The Halide compiler takes this C++
program and generates efficient GPU code coming close to manually
optimized, low-level library code. By looking at the code in List-
ing 1.4, it is immediately apparent that writing Halide code is much
simpler than optimizing programs manually. However, writing a
schedule is still significantly more challenging than writing the algo-
rithm describing matrix-matrix multiplication. Schedules are written
using a sequence of API calls on the C++ objects representing the
input (A, B) and output (out) data. The prod function represents the
reduction operation in Halide’s internal representation. While the
algorithm and schedule are separated, they still share the same C++
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1 // the algorithm: functional description of matrix multiplication

2 Var x("x"), y("y"); Func prod("prod"); RDom r(0, size);

3 prod(x, y) += A(x, r) * B(r, y);

4 out(x, y) = prod(x, y);

5

6 // schedule for Nvidida GPUs

7 const int warp_size = 32; const int vec_size = 2;

8 const int x_tile = 3; const int y_tile = 4;

9 const int y_unroll = 8; const int r_unroll = 1;

10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;

11 out.bound(x, 0, size).bound(y, 0, size)

12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,

13 y_tile * y_unroll)

14 .split(yi, ty, yi, y_unroll)

15 .vectorize(xi, vec_size)

16 .split(xi, xio, xii, warp_size)

17 .reorder(xio, yi, xii, ty, x, y)

18 .unroll(xio).unroll(yi)

19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);

20 prod.store_in(MemoryType::Register).compute_at(out, x)

21 .split(x, xo, xi, warp_size * vec_size, RoundUp)

22 .split(y, ty, y, y_unroll)

23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)

24 .unroll(xo).unroll(y).update()

25 .split(x, xo, xi, warp_size * vec_size, RoundUp)

26 .split(y, ty, y, y_unroll)

27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)

28 .split(r.x, rxo, rxi, warp_size)

29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)

30 .unroll(xo).unroll(y);

31 Var Bx = B.in().args()[0], By = B.in().args()[1];

32 Var Ax = A.in().args()[0], Ay = A.in().args()[1];

33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)

34 .gpu_lanes(xi).unroll(xo).unroll(By);

35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)

36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)

37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);

38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)

39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)

40 .unroll(xo).unroll(Ay);

Listing 1.4: Matrix-matrix multiplication in Halide. Lines 2–4 define the
computation A×B, the other lines define the schedule specifying the optimizations
to be applied by the compiler. From: https://github.com/halide/Halide/blob/master/

apps/cuda_mat_mul/mat_mul_generator.cpp.

identifiers and must, therefore, be written in the same C++ scope,
limiting the reuse of schedules across algorithms.

The Halide schedule in Listing 1.4 uses 12 built-in optimiza-
tion primitives (bound, tile, split, vectorize, reorder, unroll, update,
compute_at, store_in, gpu_blocks, gpu_threads, gpu_lanes). Some of
these optimizations are specific for the hardware (like vectorize or
gpu_threads), others are generally useful algorithmic optimizations
for many applications (like tile applying tiling to increase data
locality), and others are low-level optimizations (like unroll and
reorder that transform loop nests). Some primitives’ behavior is not
intuitive and the documentation provides only informal descrip-
tions, e.g., for update: “Get a handle on an update step for the purposes

https://github.com/halide/Halide/blob/master/apps/cuda_mat_mul/mat_mul_generator.cpp
https://github.com/halide/Halide/blob/master/apps/cuda_mat_mul/mat_mul_generator.cpp
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of scheduling it.” The lack of precise semantics or even informal de-
scriptions of the optimization primitives makes reasoning about the
schedule difficult. For example, it is unclear why lines 21–23 are
repeated at lines 25–27 with calls to unroll and update in between.

The Halide framework is not easily extensible. Adding a new
optimization primitive to the schedule API requires extending the
Halide compiler. For example, a primitive like tile that can be
implemented with split and reorder [73] is represented not as a
composition but rather provided as a built-in abstraction.

Even though schedule-based, domain-specific compilation
achieves the desired performance and exposes fine-grained con-
trol over where, when, and how optimizations are applied, the
approach remains inherently domain-specific due to a fixed set of
built-in domain-specific optimization primitives. More crucially, the
so-called scheduling languages lack desirable properties of actual
programming languages that would allow us to define custom user-
defined abstractions for optimizations to make them reusable across
multiple domains.

summary : the optimization challenge In the previous
paragraphs, we discussed the importance of optimizing domain-
specific computations and the challenges for automating this process
using optimizing compilers. Generally, significantly optimizing per-
formance comes at the cost of increasing code size and complexity.
Optimizing compilers aim to automate this process, but general-
purpose compilers are not suitable for high-performance domain-
specific compilation. They only provide a one-size-fits-all solution
where precise control is needed. Schedule-based domain-specific
compilers offer this control; however, their schedule languages are
not extensible and inherently domain-specific, thus not portable to
other application domains.

Generally, the Optimization Challenge is summarized by the fol-
lowing question:

How can we encode and apply domain-specific optimizations for high-
performance code generation while providing precise control and the ability
to define custom optimizations, thus achieving a reusable optimization
approach across application domains and hardware architectures?

Chapter 3 will demonstrate the optimization potential of domain-
specific compilation with an in-depth case study of the domain-
specific compiler that generated the optimized CUDA code shown
in Listing 1.2. In Chapter 5 of this thesis, we introduce, discuss, and
evaluate a novel language for specifying optimization strategies as a
possible solution to the optimization challenge.
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1.3 contributions of this thesis

This thesis proposes a new approach to the construction of compil-
ers. We aim to achieve the benefits of domain-specific compilation
targeting different application domains and hardware architectures
without the need to construct multiple domain-specific compilers.

This thesis makes the following three contributions:

For demonstrating the potential of domain-specific compilation:

a compiler for optimizing data movements on gpus

We introduce Fireiron, a novel domain-specific compiler targeting
GPUs. We demonstrate the importance of efficient data movements
and develop a domain-specific scheduling language for their op-
timization. In an in-depth case study of matrix multiplications,
we evaluate the advantages of domain-specific compilation and
compare the generated code to high-performance library imple-
mentations. We show that Fireiron generates code that achieves
performance on par or even outperforms code tuned by human per-
formance engineers. We also discuss the construction and drawbacks
of developing a domain-specific compiler from scratch, leading to
the two following contributions.

For addressing the Intermediate Representation Challenge:

extending the lift ir for stencil computations

We show how a purely functional intermediate representation can
be made suitable for addressing the IR challenge. By defining and
composing a small set of domain-agnostic computational building
blocks, we provide high-level domain-specific abstractions. Specifi-
cally, we extend the Lift intermediate representation, which so far
has been used for expressing dense linear algebra computations, for
adding support for expressing and optimizing stencil computations.
We also show that the achieved performance is on par with existing
domain-specific compilers and handwritten benchmarks.

For addressing the Optimization Challenge:

a language for describing optimization strategies

We present ELEVATE, a novel language allowing to specify high-
performance program optimizations as strategies based on rewrite
rules. Similar to the Lift IR, which provides generic computational
building blocks, ELEVATE defines a small set of domain-agnostic build-
ing blocks for specifying program transformations. Composing those
allows us to express domain-specific optimizations. We show how
to implement modern scheduling languages from first principles;
however, without having the drawbacks of existing schedule-based
compilers. Finally, we evaluate our optimization approach by com-
paring against state-of-the-art domain-specific compilers.
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1.4 outline of this thesis

The remainder of this thesis is structured as follows.

Chapter 2 introduces the necessary background required for
understanding the contributions made in this thesis. We briefly
introduce modern parallel hardware architectures and the parallel
programming models we use throughout this thesis.

Chapter 3 demonstrates the necessity for and the advantages
of domain-specific compilation. We introduce Fireiron, a domain-
specific scheduling language, and compiler for generating high-
performance matrix multiplication kernels targeting NVIDIA GPUs.
We demonstrate how high-performance GPU implementations are
concisely expressed using Fireiron’s high-level abstractions. We show
that our domain-specific compiler achieves performance competitive
to manually tuned library implementations. Finally, we discuss the
drawbacks of developing a domain-specific compiler from scratch.

Chapter 4 introduces our solution for the IR Challenge. We
demonstrate how domain-specific computations are expressible us-
ing a domain-agnostic IR. Specifically, we show that we can reuse
the existing Lift IR for expressing domain-specific stencil compu-
tations by decomposing them into three generic building blocks.
We extend the Lift IR with computational primitives implementing
these generic building blocks and show that re-composing those
allows us to express complex multi-dimension stencil computations.

Chapter 5 presents our solution for the Optimization Challenge.
We introduce ELEVATE, a language for expressing program optimiza-
tion as rewrite strategies. Inspired by existing strategy languages
for term-rewriting systems, we show how to define complex pro-
gram optimizations as strategies that compose simple rewrite rules.
As a case study, we implement TVM’s state-of-the-art scheduling
language for optimizing machine learning computations from first
principles and show that our approach achieves the same perfor-
mance without having the identified drawbacks.

Chapter 6 presents a holistic approach towards domain-specific
compilation, which unifies the contributions explained in the pre-
vious technical chapters. After briefly summarizing each separate
contribution, we discuss how the concepts introduced in this thesis
can be further combined and extended.

Chapter 7 concludes with a comparison against related work.





2B A C K G R O U N D

In this chapter, we describe the technical background required to un-
derstand the contributions of this thesis. Background that is specific
only to a particular chapter will be separately introduced later, and
related work that is not necessarily required for understanding our
contributions is discussed and compared to our work in Chapter 7.

In the following chapters, we introduce approaches to domain-
specific compilation for achieving high performance on modern
parallel processors. Therefore, we begin by describing the architec-
ture of CPUs and GPUs, the two hardware architectures targeted
by the techniques discussed in the following chapters. Instead of
giving an in-depth overview of these architectures, we merely focus
on introducing their core functionality and the requirements for
achieving high performance.

Afterward, we introduce parallel programming models that allow
to program CPUs and GPUs. Specifically, we introduce OpenMP for
programming CPUs and CUDA and OpenCL for programming GPUs
because these are the target languages generated by the compilers
discussed in the following chapters.

2.1 modern parallel processors

1Dennard Scaling:
As transistors get smaller,
their power density stays
constant. [43]
2Moore’s Law:
The number of transistors
in an integrated circuit
doubles about every two
years. [106]

Due to the end of Dennard scaling1 [43] and Moore’s Law2 [106],
parallel processors are ubiquitous today. Traditionally, the perfor-
mance of a processor scaled linearly with its clock frequency. At
about 2005, due to reaching physical limits, hardware manufacturers
could not increase the clock frequency of their processors further.
This limitation led to the introduction of parallel processors.

A parallel processor generally contains two or more cores that
can perform independent computations simultaneously. The advent
of parallel processors allowed hardware manufactures to continue
producing more powerful hardware, which came at the cost of
programmers. Since then, programmers have to explicitly manage
the available parallelism to achieve the targeted parallel hardware’s
full potential.

As discussed in Chapter 1, domain-specific compilers aim to
simplify the development of parallel programs for achieving high
performance on parallel processors. To understand the challenge
for programmers and domain-specific compilers in achieving high
performance on modern parallel processors, in the following, we

21
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briefly introduce the architectures of modern CPUs and GPUs, the
two most common parallel hardware architectures.

Generally, CPUs are classified as latency-oriented architectures,
whereas GPUs are throughput-oriented [57]. Latency-oriented hard-
ware architectures aim to minimize the runtime of programs by min-
imizing the latency between the start and end of executing a single
thread of instructions using various sophisticated techniques such
as out-of-order execution and a hierarchy of caches. Throughput-
oriented hardware architectures instead aim to minimize a pro-
gram’s runtime by maximizing the computational throughput using
multiple simple cores for executing many tasks in parallel.

2.1.1 Multi-Core CPUs

A multi-core CPU consists of multiple independently operating
cores that perform computations in parallel. A CPU also containsExample: Intel i7

(Ice Lake Architecture)
8MiB L3 cache per CPU
512KiB L2 cache per core

32KB L1 instr. cache per core
48 KiB L1 data cache per core

a hierarchy of caches, small but fast memory located close to the
cores. This hierarchy is managed automatically by different so-
called replacement policies that move data between the cache levels
transparently for the programmer or compiler. The cache hierarchy
typically consists of three levels named L1, L2, and L3. The first
two levels are private to each core, and all cores share a common
slowest but largest third cache level. The fastest and smallest first
cache level closest to each core is typically divided into two parts:
an instruction cache and a cache for data.

Each CPU core is capable of executing a separate thread of instruc-
tions. Being latency-oriented, CPUs aim to execute the instructions of
a single serial thread as fast as possible. In the following, we briefly
explain three kinds of parallelism that CPUs exploit to minimize
this latency: Instruction-Level Parallelism, Thread-Level Parallelism, and
Data Parallelism.

instruction-level parallelism Generally, Instruction-
Level Parallelism (ILP) denotes the ability of a CPU core to exe-
cute multiple instructions in parallel. Different micro-architectural
approaches exist to exploit ILP.

Instruction Pipelining describes a technique to split a single in-
struction into a series of sequential steps that are each executed
by a different processing unit. Five subsequent so-called micro-
operations describe a typical pipeline for executing a single in-
struction: instruction-fetch, instruction-decode, execute, memory
access, and write-back. Splitting an instruction into multiple micro-
operations allows for overlapping the execution of instructions and
minimizes the overall latency of executing a program. For example,
as soon as the first instruction is fetched, this instruction will be
decoded while the next instruction can be fetched simultaneously.
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A superscalar processor contains multiple execution units allowing
to process several instructions in parallel by, for example, fetching
two instructions simultaneously using separate execution units. A
CPU contains several kinds of execution units, including arithmetic
logic units (ALU), address generation units (AGU), and load-store
units (LSU). For example, the Sunny Cove core architecture used in
Intel’s latest Ice Lake CPU architecture describes a superscalar core
that can execute up to 10 instructions per cycle.

Other techniques to implement and improve the efficacy of ILP
are out-of-order execution, register renaming, speculative execu-
tion, and branch prediction. However, all techniques for exploiting
instruction-level parallelism lie outside the programmer’s control
and are performed transparently by the hardware. In contrast, the
programmer or compiler must explicitly use the following two kinds
of parallelism that we briefly describe.

thread-level parallelism As mentioned earlier, the advent
of parallel hardware architectures such as multi-core CPUs put a
significant burden on the programmer. Thread-level parallelism
refers to the ability to execute a separate thread of instructions
independently per CPU core. To achieve high performance on multi-
core CPUs, the programmer must develop parallel programs that
saturate the available cores by explicitly managing multiple threads.
In the next section, we briefly introduce programming models that
enable the development of such parallel programs.

Executing a single thread per core is often not enough to use
the available execution units on a core as efficiently as possible.
Simultaneous Multi-Threading (SMT) is a technique for improving the
efficiency of superscalar CPUs by enabling the execution of multiple
threads on the same core. Sharing the resources of a core among
multiple threads allows keeping execution units busy that would
be idle without SMT during the execution of only a single thread.
Modern CPUs typically support the execution of 2-4 threads per
core. For example, Intel’s implementation of SMT is called Hyper-
threading, and the i7 Ice Lake processors support the execution of
two threads per core. Typically, the scheduling, i.e., the mapping
of which core executes which thread happens transparently from
the programmer. However, SMT increases the number of parallel
threads a programmer has to manage.

data parallelism Most modern CPU architectures support a
third kind of parallelism by providing so-called Single Instruction
Multiple Data (SIMD) instruction extensions like Streaming SIMD
Extensions (SSE) or Advanced Vector Extensions (AVX). SSE and
AVX are examples for instruction set extensions that provide SIMD
instructions to manipulate multiple data elements (vectors) using



24 background

a single instruction. A CPU that supports extensions like SSE and
AVX contains dedicated specialized execution units that perform
operations on vector registers. For example, Intel’s Ice Lake CPUs
support the latest AVX-512 extension, which entails that they contain
special 512-bit wide vector registers that can, for example, hold up
to 16 single-precision floating-point values. AVX-512 instructions
operate on these vector registers and exploit data parallelism by
operating on several values (e.g., 16 floats) at the same time. For
example, instead of sequentially adding floating-point values using
16 traditional add-instructions, a single AVX-512 add instruction
allows the computation of the same results in one clock cycle by
adding the contents of two vector registers.

Again, it is the programmer’s or the compiler’s task to exploit
data parallelism in a program by explicitly using the operations
contained in the various SIMD instruction set extensions.

In the following, we briefly introduce the architecture of GPUs
and discuss the differences compared to the CPU architecture.

2.1.2 Many-Core GPUs

In contrast to CPUs, which contain only a few but complex cores to
minimize the latency of executing separate threads, GPUs instead
contain many simple cores to perform a large number of tasks in
parallel. Here, simple refers to the lack of sophisticated techniques
such as branch prediction or speculative execution. The GPU design
is throughput-oriented, i.e., maximizing the overall work done in a
given time frame, by focusing on performing many tasks in parallel
instead of optimizing the execution of a single serial thread.

compute hierarchy The architecture of a GPU is generally
designed to have hundreds of simple cores capable of executing
thousands of threads in parallel to maximize throughput. NVIDIA’sExample:

NVIDIA A100 [118]
(Ampere Architecture)

108 SMs per GPU
64 INT cores per SM
64 FP32 cores per SM
32 FP64 cores per SM

432 Tensor Cores per GPU

A100 GPU of the recently introduced Ampere architecture [118], for
example, contains 108 so-called Streaming Multiprocessors (SM),
which correspond to the CPU’s cores. Each SM contains multiple exe-
cution units that are called cores in NVIDIA architectures. The whole
A100 GPU, for example, contains a total of 6912 integer and single-
precision floating-point cores, and 3456 double-precision floating-
point cores to perform computations in parallel. Additionally, since
the introduction of the Volta architecture [110] released in 2017, mod-
ern NVIDIA GPUs contain specialized cores for computing machine-
learning-specific workloads. These are called Tensor Cores, and they
are used for computing matrix multiply and accumulate operations
and achieve a significant speedup compared to performing the same
computation using traditional cores.
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memory hierarchy The memory hierarchy of a GPU consists
of multiple levels. The slowest but largest memory region on a GPU
is the off-chip DRAM that is shared among all SMs. Similar to the
CPU, a GPU also contains a hierarchy of caches (L2, L1, and L0

on Ampere) that are managed by the hardware transparently to
the programmer. For example, the A100 contains a 40MB L2 cache Example:

NVIDIA A100 [118]
(Ampere Architecture):
40GB DRAM per GPU
40MB L2 per GPU
192KB (L1/sh.mem.) per SM
256KB Register File per SM

that is shared among all SMs of the GPU. However, in contrast to
CPUs, a GPU additionally contains a so-called shared memory. Shared
memory can be viewed as a software-managed cache entirely in
control of the programmer and shared among all cores of an SM. On
the A100, each SM has a combined 192 KB L1 data cache and shared
memory. The shared memory size on the Ampere architecture is
software-configurable to take up as much as 164 KB of the 192KB
region; the rest is automatically dedicated to the L1 cache.

The fastest memory on a GPU is the register file. Due to the high
number of cores, a GPU typically also contains a large register file
to provide enough fast storage for operands and temporary results
to the single cores. For example, all recent NVIDIA architectures
(e.g., Pascal, Volta, or Ampere) contain 65536 32-bit registers per
SM [117].

simt-architecture Single Instruction Multiple Threads (SIMT)
describes the execution model implemented by NVIDIA GPUs [111].
As mentioned before, the Streaming Multiprocessor is designed to
execute thousands of threads in parallel. On a GPU, threads are
scheduled and executed in small groups of 32 threads called warps
(or wavefronts on AMD GPUs).

A warp always executes the same instruction at a time, hence the
name SIMT. Threads of the same warp might diverge in control-flow,
for example, by taking different paths after a branch. In this case, a
warp executes each branch taken sequentially, and threads that are
not on the current path (i.e., so-called passive threads) are disabled –
this is called branch diversion. For achieving high GPU performance,
branch diversion must be avoided whenever possible to always have
32 active threads performing the same computation.

memory access coalescing and bank conflicts Besides
avoiding branch diversion, two other crucial optimizations for im-
proving GPU performance are memory access coalescing and the avoid-
ance of shared memory bank conflicts.

When a warp accesses data stored in the GPU’s DRAM, the load
operation’s efficiency depends on whether the DRAM access is coa-
lesced. DRAM is accessible using 32-, 64-, and 128-byte transactions.
If all memory accesses of the threads of a warp fall within the same
aligned memory region, all 32 loads coalesce into a single load trans-
action for the whole warp. A memory region is aligned if its start
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address is a multiple of 32, 64, or 128. For example, if all 32 threads
of a warp access adjacent and aligned single-precision floating-point
values (i.e., four bytes), the whole transaction is performed using a
single 128-bit load instruction. Depending on the size of the word
accessed by a thread, the warp’s access pattern, and the targeted
GPU architecture, multiple load instructions might be required if
accesses cannot be coalesced.

For improving shared memory accesses, a programmer must
consider how shared memory is implemented in hardware. On a
GPU, shared memory is organized in so-called banks. Successive
32-bit words are organized into 32 banks (16 banks on pre-Fermi
architectures) that are simultaneously accessible by the threads
of a warp. As soon as multiple threads access the same bank, a
so-called bank conflict occurs, and the accesses must be serialized,
which reduces the shared memory throughput. To achieve high
performance on GPUs, shared memory load and store conflicts must
be avoided whenever possible by optimizing the warp’s shared
memory access pattern.

tensor cores Finally, we briefly discuss NVIDIA’s Tensor Cores
in more detail as it is required to use them efficiently to achieve
near peak performance. Tensor Cores were introduced with the
Volta architecture and are designed to accelerate machine learning
workloads specifically. Since low-precision matrix multiplication is
at the core of the majority of machine learning computations, Tensor
Cores provide new instructions that multiply and accumulate small
matrices very efficiently. On Volta, for example, multiplying matrices
using Tensor Cores provides up to 12× higher peak FLOPS [110] than
performing the same computation using regular fused-multiply-add
(FMA) instructions. The multiplication is typically performed using
half-precision (16-bit floating-point), while the accumulation can be
performed in up to single precision. Newer architectures like Turing
and Ampere support more low-precision formats, including an 8-bit
integer or a new so-called 32-bit Tensor Float [118].

NVIDIA’s PTX assembly [109] exposes Tensor Cores in two ways:
1) The wmma.mma instruction performs warp-wide matrix multiplica-
tions (the supported operand shapes depend on the used data type).
2) The mma instruction performs more fine-grained matrix multipli-1 Warp = 4 Quad-Pairs

1 QP = 8 Threads (T)
QP0: T0-3 & T16-19
QP1: T4-7 & T20-23

QP2: T8-11 & T24-27
QP3: T12-15 & T28-31

cations executed by groups of eight specific threads, which we will
call quad-pairs in the following. Both instructions operate on small
collections of registers, so-called register fragments. The operand
matrix values must be distributed across the quad-pair’s register
fragments precisely according to complex and prescribed mappings
defined in the ISA. Achieving high-performance using Tensor Cores
is challenging due to the low-level and fine-grained control required
to use Tensor Core instructions correctly.
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2.2 programming parallel processors

In this section, we describe programming models for targeting par-
allel hardware such as multi-core CPUs and many-core GPUs with
Tensor Cores. We specifically only focus on the programming mod-
els we use in the subsequent chapters and defer the discussion of
related approaches to Chapter 7.

To achieve the highest performance on CPUs and GPUs, paral-
lel threads must be managed to saturate all available cores. There
exists a wide variety of parallel programming models that allow
us to develop such parallel programs. In the following, we begin
with a brief introduction of OpenMP that we use for programming
multi-core CPUs. Afterward, we describe the CUDA and OpenCL
programming models that we use to target GPUs. Generally, the
compilers we introduce in the following technical chapters gener-
ate parallel OpenMP, OpenCL, and CUDA programs for targeting
different CPU and GPU architectures.

2.2.1 OpenMP

OpenMP [15] is an API for developing parallel C, C++, and Fortran
programs. It has been introduced in 1997 and was initially designed
for parallelizing sequential programs targeting the CPU. Since ver-
sion 4.5, OpenMP can also be used to target accelerators like GPUs.
Chapter 5 will introduce the RISE programming language whose
compiler generates parallel OpenMP code for targeting multi-core
CPUs. In the following, we only briefly explain the OpenMP features
used by the RISE compiler.

OpenMP provides a set of so-called pragmas that a programmer
or compiler uses to annotate a sequential program. An OpenMP
pragma specifies how and which regions of a sequential program
are executed in parallel. A compiler supporting OpenMP compiles
the annotated regions into parallel code that, for example, uses
multiple threads to exploit the available cores of the targeted parallel
hardware.

Listing 2.1 shows two examples for the parallelization of sequen-
tial C loops using OpenMP. Annotating the first loop using #pragma

omp parallel for (line 2) causes the body of the loop to be executed
using multiple threads. The exact number of threads launched for
executing this loop is determined at runtime following an algo-
rithm defined in the OpenMP specification [15]. Generally, OpenMP
uses the fork-join model of parallel execution. At the beginning of
the execution of an OpenMP program, a single thread is used. As
soon as this initial thread reaches a parallel region introduced by
#pragma omp parallel, it forks multiple child threads for computing
the annotated region in parallel. In our example, the for-loop body
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1 void openmp_example(int n, float *a) {

2 #pragma omp parallel for

3 for(int i = 0; i < n; i++)

4 a[i] = a[i] * 2.0f; // parallel execution

5

6 #pragma omp simd

7 for(int i = 0; i < n; i++)

8 a[i] = a[i] * 2.0f; // vectorized execution

9 }

Listing 2.1: Two examples for parallelizing a sequential loop using OpenMP
pragmas. The first loop is parallelized by using multiple threads to compute
the output elements. The second loop is parallelized by instructing the compiler to
generate SIMD vector instructions for computing the output elements.

is executed in parallel, and multiple threads compute independent
elements of the output array. Reaching the end of the parallel region
(line 5) causes the termination of all forked threads (join). The single
initial thread continues executing the program until another parallel
region is approached.

Using #pragma omp simd (line 6) is another way to exploit par-
allelism in sequential programs. The simd keyword instructs the
compiler to generate SIMD vector instructions for computing the
body of the loop.

The OpenMP API provides many more pragmas and so-called
clauses that expose more fine-grained control about the paralleliza-
tion. However, the parallel for and simd directives already suffice
to achieve high competitive performance on modern CPUs, as we
will discuss in Chapter 5.

2.2.2 CUDA and OpenCL

In this section, we briefly introduce CUDA and OpenCL, two parallel
programming models we use for targeting GPUs. OpenCL is capable
of targeting multiple other architectures, including CPUs; however,
we restrict this OpenCL introduction for brevity and only discuss
the programming of GPUs. In fact, we will mainly introduce CUDA
and end this section with a brief comparison to OpenCL since both
follow a similar approach when targeting GPUs.

CUDA is a parallel programming model introduced in 2006 by
NVIDIA for enabling general-purpose computing on GPUs. As their
name suggests, GPUs were initially designed and mostly used for
processing graphics applications that are inherently data-parallel.
CUDA enables programmers to use GPUs for application domains
besides graphics-processing, e.g., dense linear algebra computations,
which also significantly benefit from the parallel GPU architecture.
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kernels and compute hierarchy CUDA is a language and
runtime extension for C/C++ and enables the definition of special
functions called kernels that are computed on the GPU. In the CUDA
programming model, we differentiate between a host (typically the
CPU) and a device, the GPU. A kernel is defined using the __global__

qualifier and launched on the device using a special syntax that
allows to specify how many threads execute it. Generally, the same
instance of a kernel is executed by all threads – following the Single
Program Multiple Data (SPMD) idiom. Every thread is identified by
a unique ID that is accessible within a kernel using the keyword
threadIdx. Using the thread-ID, for example, to access an array in a
kernel, allows threads to process different values and achieves data
parallelism.

Threads are arrangeable in 1D, 2D, or 3D so-called thread-blocks,
which themselves can be arranged in up to 3D so-called grids. This
hierarchy mirrors the compute hierarchy we find in the GPU archi-
tecture: At runtime, blocks of a grid are scheduled to be executed
on the GPU’s SMs while threads of a block are executed on the cores
of an SM. As mentioned before, on the hardware, threads are sched-
uled and executed as warps - groups of 32 threads. However, this
happens transparently to the programmer, and it is not necessary,
though beneficial in terms of performance, to define the block size
to be a multiple of 32.

memory hierarchy The CUDA memory hierarchy similarly
mirrors the different memories existent on a GPU, and consists of
so-called global-, shared-, and local memory. Global memory corre-
sponds to the GPUs DRAM and is accessible by all blocks of a grid.
Furthermore, it is persistent across kernels launches. The CUDA API
provides functions for the data management between the host and
the device, including data allocation and transferring data to and
from the GPU. In the following chapters, we are mostly interested in
generating high-performance kernels and, therefore, omit a further
discussion about efficient host-to-device data transfers.

Shared memory is accessible by all threads of a block and is
allocated using the __shared__ qualifier. Local memory is private to
each thread and is mapped into the GPUs DRAM. Whenever possible,
the compiler uses the fast register file for thread-private variables.
However, if a kernel requires more registers than available on the
SM, the remaining variables are automatically spilled into the slow
local memory.

Finally, CUDA provides additional read-only memory regions:
constant-, texture-, and surface memory, which are also mapped to the
DRAM and optimized for different memory usages.
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compilation and inline assembly At compile-time, the
NVIDIA nvcc compiler separates all host code from device code, i.e.,
the kernel functions annotated with __global__. The host code is
compiled with a standard C/C++ compiler, such as clang. The device
code is compiled to PTX, NVIDIA’s stable virtual machine ISA. PTX
is not the assembly code eventually executed on the targeted GPU.
Instead, it is an intermediate language that enables the execution
of the same compiled program across different GPU architectures.
At runtime, the PTX code is just-in-time compiled into the actual
machine code of the targeted hardware. The intermediate step via
PTX enables the execution of the same code on multiple architectures,
including GPUs that will be introduced in the future whose machine
code is not available yet.

Even though GPU kernels are typically developed in CUDA, it
is sometimes beneficial to explicitly use specific PTX instructions.
These typically offer more-fine grained control compared to what
is expressible in pure CUDA. This is especially true for targeting
Tensor Cores introduced with the Volta architecture. The CUDA API
exposes Tensor Cores using the WMMA API [119], a library provid-
ing functions for executing warp-wide matrix multiplications. PTX
instead, additionally exposes the quad-pair-level mma instructions,
which offer more flexibility and, therefore, sometimes lead to higher
performance, as we will show in the next chapter.

CUDA allows the use of PTX instructions via inline assembly [112],
similar to how intrinsics can be inserted into C programs. The asm

keyword enables the insertion of PTX instructions into CUDA code.
For example, the following code is translated into the add.s32 PTX
instruction:

asm("add.s32 %0, %1, %2;" : "=r"(i) : "r"(j), "r"(k));

Here, %0-2 represent arguments to the PTX add.s32 instruction. Dur-
ing compilation, these arguments are replaced by the CUDA values
i, j, and k. The letter r specifies that these values reside in unsigned
32-bit registers, and =r specifies that this register is written to. In the
next chapter, we show more examples of how to use inline assembly
for developing high-performance GPU kernels with CUDA.

comparison to opencl OpenCL is an open standard [61] for
the parallel programming of heterogeneous platforms introduced in
2009 and developed and maintained by the Khronos group. OpenCL
is supported by a wide range of devices from different hardware
vendors, including NVIDIA, AMD, ARM, Intel, and runs on vari-
ous architectures, including CPUs, GPUs, as well as other kinds of
accelerators such as FPGAs.

In the following chapters, we use OpenCL to program GPUs only.
For this purpose, OpenCL can be viewed as a programming model
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CUDA OpenCL

Streaming Multiprocessors (SMs) Compute Units

Cores Processing Elements

Thread Block Work-Group

Thread Work-Item

Global Memory Global Memory

Constant Memory Constant Memory

Shared Memory Local Memory

Local Memory Private Memory

Table 2.1: Comparing OpenCL and CUDA concepts.

similar to CUDA, which merely uses different names for the same
concepts. For example, OpenCL also differentiates between a host
and a device that is used for offloading computations. Since OpenCL
runs on multiple architectures, a device is defined as an abstract pro-
cessor consisting of Compute Units that themselves contain Processing
Elements. If OpenCL is used to target GPUs, the compute units map
to the GPUs SMs, and the processing elements map to the SM’s cores.

Essentially, OpenCL supports the same compute and memory
hierarchy as defined by CUDA, and Table 2.1 compares the names
used in both programming models for the same concepts. In the
next chapter, we use the CUDA terminology because we introduce a
domain-specific compiler that generates high-performance CUDA
kernels. In Chapter 4, we use the OpenCL terminology because we
introduce a compiler IR that is translated into high-performance
OpenCL kernels.





3F I R E I R O N : D O M A I N - S P E C I F I C
C O M P I L AT I O N F O R G P U S

This chapter is largely
based on the publication:
"Fireiron: A
Data-Movement-Aware
Scheduling Language for
GPUs" [66] by Hagedorn,
Elliott, Barthels, Bodik,
and Grover published at
PACT’20.

In this chapter, we demonstrate the advantages of domain-specific
compilation by introducing Fireiron: A framework that includes a
data-movement-aware IR, scheduling language, and domain-specific
compiler for generating high-performance GPU matrix multiplica-
tion implementations. Fireiron is aimed at performance experts. It
provides high-level abstractions for expressing GPU optimizations
that are unavailable in other compilers and which so far must be
manually written in assembly instead.

We start by motivating the need for a schedule-based domain-
specific compiler targeting GPUs and matrix multiplications specifi-
cally. We identify the importance of expressing precise data move-
ment optimizations and targeting low-level, hardware-specific in-
structions. After discussing the limitations of existing compilers, we
introduce Fireiron’s IR, the scheduling language for constructing it,
and how to generate high-performance CUDA code.

We evaluate Fireiron on three GPU architectures against expert-
written advanced matrix multiplications. First, we show that Fireiron
schedules can express the optimizations applied in these implemen-
tations while requiring about 6× less lines of code. Second, we
show that the code optimized by Fireiron schedules outperforms
the fastest implementations (provided by the manually-optimized
cuBLAS library) by more than 2×. We conclude this chapter by identi-
fying the advantages of our approach and discussing the drawbacks
of developing a domain-specific compiler from scratch.

3.1 introduction

Developing high-performance GPU kernels is challenging because of
their complex multi-layered compute and memory hierarchies. Only
if a kernel makes optimal use of both hierarchies, implementations
achieve performance close to the hardware’s theoretical peak.

On modern GPUs, achieving optimal performance essentially boils
down to carefully organized data movements and the precise use of
specialized hardware units such as NVIDIA’s Tensor Cores. Today,
there remains a significant gap between optimizing compilers versus
what human experts achieve by hand-tuning implementations using
low-level assembly. Figure 3.1 (a) shows the performance of the best
matrix multiplication implementations we found for Halide [141]

33
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Figure 3.1: (a) Comparing Halide’s [72] and TVM’s [173] matrix multiplication
performance against cuBLAS (higher is better) reveals a significant remaining gap
in performance. Fireiron allows GPU experts to specify implementations that even
outperform hand-tuned cuBLAS library code. (b) The Fireiron-generated CUDA
code achieving this performance contains mostly data movements, which motivates
a scheduling language where data movements are first-class constructs.

and TVM [29], two state-of-the-art compilers, compared to the per-
formance achieved by NVIDIA’s experts providing manually tuned
implementations in the high-performance cuBLAS library. Manually
developing efficient kernels is time-intensive and error-prone even
for experts, and, more crucially, it complicates experimentation and
thus hinders potentially unlocking even higher performance.

Schedule-based compilation [29, 141], which gained popularity
with the introduction of Halide, is a huge step towards providing
experts with a powerful tool for developing high-performance pro-
grams. However, the current approaches still prevent experts from
closing the performance gap because they treat data movements as
second-class citizens: In order to unlock the highest performance,
it is crucial to define precise mappings of computations to paral-
lel compute units but also how data movements are coordinated
through the memory hierarchy.

In this chapter, we propose Fireiron, a scheduling language, IR,
and compiler for performance experts. With Fireiron, programmers
can define where computations and data movements take place. This
control is required to unlock the potential of specialized hardware
such as Tensor Cores. We make the following contributions:

1. We introduce a compiler IR in which both computations and
data movements are first-class citizens, meaning that they can
be scheduled with the same primitives.

2. Our scheduling language provides high-level abstractions for
gradually decomposing computations and data movements un-
til they match assembly instructions, accelerator primitives,
or predefined microkernels, each represented using precise
specifications.

3. We show that Fireiron schedules can express optimizations
used in handwritten kernels while requiring 6× less code.
With Fireiron, experts can develop high-performance GPU ker-
nels computing matrix multiplications that even outperform
cuBLAS hand-tuned library implementations by more than 2×.
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Figure 3.2: Visualization of a simple Matrix Multiplication epilog and its imple-
mentation in both CUDA and Fireiron. Every thread directly copies its computed
results from register file (CRF) to global memory (C). This implementation strategy
is not efficient due to uncoalesced writes to global memory.

3.2 how to achieve high gpu performance

Efficiently using the GPU’s compute and memory hierarchy re-
quires the coordinated application of multiple optimizations. When
optimizing data movements, for example, depending on the in-
structions used, the ownership (that is the specific mapping of
threads to data) is fixed, which complicates achieving efficient mem-
ory access patterns. With the introduction of Tensor Cores, data
movements become even more challenging because their mma.sync

instructions [113] impose complicated ownerships involving small
groups of eight threads (Quad-Pairs). To alleviate ownership-related
restrictions, data movements can be decomposed into two steps,
as discussed in the following two examples, allowing threads to
exchange data in between to achieve more efficient reads and writes.

Epilog: The last part of a
GPU kernel in which the
computed results need to
be stored back to global
memory

Consider the epilog of a matrix multiplication kernel as an (often
neglected) example. It is crucial to optimize the epilog because it
is entirely memory bandwidth limited due to only moving data:
After performing the computation, in the epilog, each thread-block
must move its computed results back to global memory. Typically,
these results are distributed across the registers of a block’s threads.
Figure 3.2 shows a simple epilog strategy in which every thread
directly copies its computed results to global memory and CUDA
code implementing this data movement. This implementation is not
very efficient due to uncoalesced writes to global memory, i.e., C
needs to be accessed by writing rows instead of 8× 8 tiles.
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Figure 3.3: An optimized matrix multiplication epilog: Synchronize via shared
memory. This allows vectorized and coalesced stores to global memory while
avoiding bank conflicts using padding in shared memory.

Figure 3.3 shows an optimized epilog, and here, we additionally
assume that the results were computed using Tensor Cores. When

1 Warp = 4 Quad-Pairs
1 QP = 8 Threads (T)
QP0: T0-3 & T16-19
QP1: T4-7 & T20-23

QP2: T8-11 & T24-27
QP3: T12-15 & T28-31

The Quad-Pair tiles
interleave because they are
non-contiguous (here: four
4× 4 distributed sub-tiles)

Tensor Cores are used, at runtime, a warp is partitioned into four
Quad-Pairs, groups of eight specific threads, which cooperatively
execute a mma.sync instruction to compute an 8×8 tile of the output.
Tensor Cores are programmable using a family of mma.sync variants
for different operand storage layouts (row- or column-major) and
accumulation precision (FP16 or FP32). Each variant prescribes a dif-
ferent quad-pair-level ownership. In this version, the quad-pairs,
and thus their threads, computed logically distributed tiles that are
physically stored in contiguous registers. For achieving coalesced
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1 val RFtoSH = Move(C:128x128)(RF->SH)(Block) // implement step 1

2 .tile(64,32).to(Warp) // assign 64x32 tiles to warps

3 .tile(16,16) // process 16x16 tiles sequentially

4 // The following mapping is prescribed by Tensor Cores ...

5 .tile((4,8),(4,8)).to(QuadPair) // strided tiles for quad-pairs/threads:

6 .tile((1,2),(2,4)).to(Thread) // .tile((rowSize,rowOffset), ...)

7 .tile(1,1) // copy elements sequentially to SH

8

9 val SHtoGL = Move(C:128x128)(SH->GL)(Block) // implement step 2

10 .tile(16, 128).to(Warp) // assign 16 rows to a single warp

11 .tile(1, 128) // copy rows sequentially

12 .tile(1, 8).to(Thread) // each thread stores 128Bit (8*FP16)

13

14 val optimizedEpilog = Move(C:128x128)(RF->GL)(Block)

15 .move(Move.src, SH, RFtoSH).pad(4) // step 1: Move results from RF to SH

16 .apply(SHtoGL).done // step 2: Move results from SH to GL

Listing 3.1: Expressing the optimized epilog (Figure 3.3) in Fireiron.

writes to global memory, threads have to exchange data in shared
memory first to be able to store results which they themselves have
not computed. Every block allocates a temporary buffer in shared

Certain memory access
patterns enable the GPU to
coalesce groups of reads or
writes into one
operation. [111]
(See Section 2.1.2)

memory for the coordinated data exchange (indicated by the dif-
ferent write and read patterns). The second step of this optimized
epilog (SHtoGL) is rather standard: All threads of a warp move a
complete row from shared- to global memory achieving coalesced
and vectorized writes. The first step (RFtoSH), is more complicated
due to the dictated Tensor Core ownership. Instead of simply ma-
terializing the ownership in shared memory in the first step, the
data movement to and from shared memory can be further opti-
mized: Padding the shared memory buffer with additional columns Shared memory is

organized in banks that
can be accessed by one
thread at a time.
A bank conflict occurs
when multiple threads
access the same bank.
(See Section 2.1.2)

achieves a skewed read and write access pattern (see the warp-level
write to shared memory in Figure 3.3), reducing the number of read
and write bank conflicts.

Implementing the optimized epilog requires about 7× more lines
of CUDA code and is significantly more complex than the simple
version. In the next section, we explain how to express both ver-
sions in a precise way, using Fireiron, as shown in Figure 3.2 and
Listing 3.1.

limitations of today’s schedule-based approaches In
schedule-based compilers like TVM and Halide, data movements are
generally treated as second-class citizens. Therefore, expressing opti-
mizations, especially for data movements, is a stretch and blurs the
line between algorithms and schedules. For example, optimizations
like storage layout transformations require drastic changes to the
algorithm instead of being expressible as a schedule. Listing 3.2 (top)
shows a naive matrix multiplication algorithm in TVM [172]. Because
existing scheduling languages can only decompose computations, a
modified and optimized algorithm in which a new function packedB
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1 # Naive Algorithm

2 k = te.reduce_axis((0, K), 'k')

3 A = te.placeholder((M, K), name='A')

4 B = te.placeholder((K, N), name='B')

5 C = te.compute((M, N),

6 lambda x,y: te.sum(A[x,k]*B[k,y], axis=k),name='C')

7

8 # Optimized Algorithm

9 packedB = te.compute((N/bn,K,bn),lambda x,y,z:B[y,x*bn+z],name='packedB')

10 C_opt = te.compute((M, N), lambda x, y: te.sum(A[x, k] *
11 packedB[y // bn, k, tvm.tir.indexmod(y, bn)], axis=k), name = 'C_opt')

Listing 3.2: Schedule-based compilers like TVM aim to separate expressing
computations as algorithms and optimizations as schedules. However, performing
data movement-related optimizations such as storage layout transformations
requires to drastically modify the algorithm instead of the schedule.

must be introduced to permute elements in memory (bottom). Addi-
tionally, the existing languages allow to allocate temporary buffers
in specific locations (e.g., using Halide’s store_in primitive), and
by introducing identity computations as redundant compute stages,
data movements are implicitly scheduled by scheduling the com-
putation of the producer and consumer stage. The compiler then
needs to infer the implications for the associated reads and writes
of this data movement during code generation. However, inferring
the coordination required for expressing advanced data movements
such as the optimized epilog shown in Figure 3.3 is beyond the
reach of automatic compiler analysis.

Additionally, using Tensor Cores efficiently on modern GPUs
is crucial but challenging because it requires considering precise
data-to-thread mappings: At runtime, a warp executes four mma.sync

instructions simultaneously. Each instruction is collectively executed
with eight specific threads (a quad-pair). For example, the first quad-
pair consists of threads 0-3 and threads 16-19. Every thread of a
quad-pair contains four values of both operands in registers, which
they share to compute an 8×8 output tile collectively. NVIDIA pro-
vides a CUDA interface (WMMA [119]) that exposes a conceptually
single, warp-wide macro-mma using a fixed data-to-quad-pair map-
ping, which is optimal in some cases but not all. Some situations
require more sophisticated mappings such as the one shown in
Figure 3.3, where a quad-pair, and thus its threads, operate on inter-
leaved distributed tiles. In Fireiron, one can a) flexibly decompose
warp-level computations to quad-pairs and b) implement the re-
quired data movements by treating moves as schedulable operations,
as we will show in the following. Existing scheduling languages
lack these mechanisms and currently only target WMMA, which
potentially explains the remaining gap in performance shown in
Figure 3.1.
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Figure 3.4: Showing the hierarchical structure of GPU kernels using a matrix multiplication as an example.
Within a typical GPU kernel, we gradually descend the compute and memory hierarchy while computing smaller
instances of the original problem.

3.3 rethinking scheduling languages

With Fireiron, we aim to design an IR that reflects the hierarchical
structure of high-performance code, and a scheduling language
generating this IR, that allows experts to express optimizations for
computations and data movements.

We start by highlighting the hierarchical structure of GPU ker-
nels and the role of data movements in the code. In Figure 3.4, we
show this structure using a simple matrix multiplication kernel as
an example. The computation is hierarchically decomposed into
sub-computations of the same kind, i.e., matrix multiplications oper-
ating on smaller shapes (blue boxes), until eventually, every thread
computes a single FMA instruction in registers (innermost blue box)
that can be viewed as a matrix multiplication of matrices containing
only a single element. In between, data is moved to lower levels of
the memory hierarchy (purple boxes), and for brevity, we show no
data movement implementations, i.e., no purple box contains nested
boxes. However, every data movement is similarly decomposed, as
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Figure 3.5: Describing and representing the implementation shown in Figure 3.4
using Fireiron’s decompositions to construct the IR of nested specifications.

indicated on the bottom where the epilog of this kernel (the last
purple box) might be implemented as explained in Figure 3.3.

Figure 3.5 shows how the code in Figure 3.4 is expressed using
our scheduling language (Fireiron Strategy) and the corresponding
IR that is created. Again, we omit the strategies for data movements
and instead indicate their decomposition (using .apply(strategy)).
For example, store can be replaced by the optimizedEpilog strategy
shown in Listing 3.1.

The rest of this section describes our IR consisting of nested Speci-
fications (specs) and the scheduling primitives called Decompositions
that create the IR and describe implementation strategies. The key
idea behind Fireiron is that implementations are described by gradu-
ally decomposing specs until only specs remain for which we know
how to generate code. In the following, a Fireiron program using
decompositions is called a strategy because it is meant to capture
the implementation strategy thought of by a human expert when
developing low-level code. Currently, Fireiron is implemented as a
domain-specific language embedded in Scala and generates CUDA
kernels with inline PTX assembly.
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Figure 3.6: Examples of Fireiron specs: A kernel-level matrix multiplication com-
putation and a specification for a data movement from global to shared memory.
An executable spec directly corresponds to an instruction like __hfma in CUDA or
ld.global.nc.v4.b32 in PTX.

3.3.1 Specifications

Each box in Figure 3.4 can be labeled with an accurate description
of the task performed inside it. We call this label the Specification
(spec). Its implementation is observed by looking inside the box
where the task is further decomposed. In Fireiron, a spec is a data
structure describing the task to implement. A spec contains enough
information such that a programmer would be able to manually
provide an implementation. This especially entails that it contains
the shapes, locations, and storage layouts of its operands, including
the responsible level of the compute hierarchy performing this oper-
ation. Currently, Fireiron supports two main classes of specs: Matrix
Multiplication (MatMul), and data movement (Move). Figure 3.6 (top)
shows a kernel-level MatMul spec and a Move spec describing the
movement of a matrix src from global to shared memory during
which the storage layout is transformed from column- to row-major.

For matrices, Fireiron supports constant and symbolic shapes writ-
ten as arithmetic expressions. We write MatMul(M,N,K)(GL,GL,GL)

(Kernel) and Move(src:128x8)(GL->SH)(Block) as a short-form for
the two upper specs shown in Figure 3.6.
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Figure 3.7: Tiling a MatMul spec results in a decomposed subspec with adjusted
dimensions and optionally adjusted compute hierarchy to indicate parallel execu-
tion.

executable specifications A specification is called executable
when it describes the semantics of a built-in instruction. Fireiron
provides a predefined set of executable specs matching different
CUDA and PTX instructions. Figure 3.6 (bottom) shows examples
for executable MatMul and Move specs and their associated code
snippets. The idea is to gradually decompose specifications until
only executable specs remain for which we know how to generate
code. At any time during the decomposition, a user can additionally
provide a handwritten micro-kernel instead which implements the
current spec. Providing handwritten micro-kernels allows the user
to break out of the DSL barriers and use custom implementations
for which we cannot yet provide good abstractions.

3.3.2 Decompositions

A Decomposition describes how to implement a spec. Applying a
decomposition to a spec generally creates one or more nested sub-
specs representing the smaller sub-problems that must be further
decomposed until they are executable. Fireiron provides two main
decompositions: tile and move, for mapping tasks to the GPU’s
compute and memory hierarchy.

the .tile decomposition Figure 3.7 shows the application of
the tile decomposition to a MatMul spec. Generally, spec.tile(r,c)
creates r× c shaped tiles in the output, and the input matrices are
tiled accordingly. Tiles can also be non-contiguous, as discussed for
the optimized epilog example (shown in Figure 3.3), in which case
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Figure 3.8: Applying move to a MatMul spec results in a new spec in which the
memory location of the specified operand has changed. A Move spec is created
representing the data movement, which is implemented as specified in the strategy
impl.

.tile expects a width and offset for both dimensions. For assigning
tiles to a compute hierarchy level, we can refine the tiling using
.to(level) which changes the responsible compute hierarchy level
for the resulting tiled spec. tile is also applicable to a Move spec in
which case the input (src) and output (dst) matrices are tiled in the
same way.

the .move decomposition The .move decomposition is the
primary way of introducing Move specs, explicitly representing data
movements, to the IR. Figure 3.8 shows the application of the move

decomposition to a MatMul spec. Here, we move the A operand
from global to shared memory. The move decomposition expects
three arguments: the matrix to move, a destination in the memory
hierarchy, and a strategy impl describing how to implement the
movement. Applying move always creates two new nested specs:
First, a Move representing the data movement to the new location
whose implementation is described in the impl strategy. Second, an
updated version of the input spec where the location of the moved
operand has changed.

The move decomposition can also be applied to a Move spec, which
allows us to specify data movements via an indirection as described
and shown in Figure 3.3.
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Figure 3.9: The split decomposition allows the creation of tiles in the K-dimension
of the input operands of a MatMul spec.

3.3.3 MatMul-specific Decompositions

The tile and move decompositions already allow to specify a wide
variety of implementations for both MatMul and Move specs. However,
to describe implementations that achieve performance on par with
hand-tuned libraries, we need two more ways to decompose a
MatMul computation.

the .split decomposition The tile decomposition allows
us to create tiles in the M and N dimension of the MatMul operands,
however, we also need to be able to create tiles in the K-dimension.
Figure 3.9 shows the application of the split decomposition, which
enables this.

the .epilog decomposition Finally, we need to be able to
specify that results shall be accumulated in lower levels of the
memory hierarchy, typically in registers, and then moved back
to global memory in the epilog of a matrix multiplication kernel.
Figure 3.10 shows the application of the epilog decomposition,
which expects three arguments: The location of the accumulation
buffer, a strategy init describing its initialization, and a strategy
impl specifying how to move the computed results back to global
memory. Similar to move, epilog creates multiple sub-specs: First, an
Init spec (a variant of Move without source operand) representing
the initialization of the buffer. Its implementation is described in the
init strategy. Second, the new MatMul spec with an updated location
of the C matrix. Third, the Move representing the movement of the
results to global memory.
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Figure 3.10: The epilog decomposition allows the accumulation of the results of a
matrix multiplication in the lower levels of the memory hierarchy and specifies the
data movement of the results back to global memory.

Inspired by Chapel [24], Fireiron provides the illusion of a block-
wide matrix residing in registers in the created sub-specs. This
distributed array abstraction allows us to think of this matrix as
a contiguous block-wide matrix, whereas actually, every thread
contains only a small tile in its registers.

3.4 code generation and targeting tensor cores

Fireiron’s IR of nested specs naturally reflects how GPU kernels
are structured. Therefore, code generation almost boils down to
pretty-printing the IR, traversing it from top to bottom. Figure 3.5
shows a compressed view of the IR where specs are directly nested.
Figures 3.7-3.10 additionally show the code snippets emitted for
each used decomposition. For example, using tile generally emits
two for-loops that sequentially iterate over the created tiles (e.g.,
Figure 3.4, lines 31-32). If tiles are assigned to the compute hierarchy
using .to, instead of emitting sequential loops, the tiles are com-
puted in parallel using the unique compute hierarchy indices for
accessing the matrices. Figure 3.2 shows a Fireiron example using
both sequential and parallel tiles and the corresponding CUDA code
we generate.

Using the split decomposition emits one loop iterating over the
tiles in the K-dimension. The epilog and move decompositions emit
no code themselves (except for synchronization if the destination
is shared memory). Instead, the created sub-specs will be further
compiled to CUDA code. The done operator is called on an executable
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spec to trigger code generation where we inject the associated code
snippet. Optionally, done accepts a String: a micro-kernel we inline
during code generation that implements the current spec.

memory allocation Memory allocation is equally straight-
forward. In order to allocate enough memory, we traverse the IR
once and register all Move specs, which specify how much to al-
locate where - by definition. For example, when visiting the spec
Move(A:128x8)(GL->SH)(Block), we emit

float __shared__ ASH[128*8];

at the beginning of the kernel. Memory allocation for distributed
arrays is more complicated. Init(C:128x128)(GL->RF)(Block), for
example, specifies the need to allocate memory in the register file.
However, allocating 128× 128 elements per thread is far too many
because a single thread only owns a small piece of the whole matrix.
To determine how many elements we need to allocate per thread,
we need to traverse the decomposition until we find the tile size
assigned to threads:

1 Init(C:128x128)(GL->RF)(Block)

2 .tile(64,32).to(Warp)

3 .tile( 8, 8).to(Thread)//<-allocate 8x8 floats per thread

4 .tile( 1, 1).done

In this case, we emit float CRF[8*8];.
Generally, every level of the compute hierarchy is associated

with a level of the memory hierarchy (Kernel→GL, Block/Warp→SH,
Thread→RF). If the responsible compute hierarchy of the Move or
Init spec does not match the associated destination, we need to
continue traversing the decomposition, as shown in the example.

index computation Index expressions for every matrix are
computed transparently while decomposing specs. Every matrix
has an associated row- and column index that is gradually updated.
Every application of a decomposition returns a new spec: We either
have a smaller version of the original matrix or we have the same
matrix moved to a new memory location. For example, applying
MatMul.tile(rs,cs) generates two nested sequential for-loops with
indices rowTile, and colTile. The index expressions for the matrices
in the resulting tiled MatMul spec are updated as follows:

1 C.rowIndex += rowTile * rs;

2 C.colIndex += colTile * cs;

3 A.rowIndex += rowTile * rs;

4 B.colIndex += colTile * cs;

If tiles are computed in parallel, for example, by using .to(Block),
we use blockIdx.x and blockIdx.y instead of rowTile and colTile.



3.4 code generation and targeting tensor cores 47

Similarly to memory allocation for distributed arrays, we have to
compare the current compute hierarchy with the memory location
of the array to update: In the following example

MatMul(128,128,8)(GL,GL,RF)(Block).tile(64,32).to(Warp)

we do update the A and B index expressions but not the index
expressions for C. This is because C resides in registers, and accessing
it using the warp indices would be incorrect. Instead, we only
start updating the index expression for C as soon as we pass the
Thread-level. The CUDA code in Figure 3.2 shows exactly this effect
where C (residing in global memory) is accessed using all compute
hierarchy indices. CRF (residing in registers) is only accessed using
the indices used below the Thread-level. The split decomposition
updates the indices as expected. Every time we allocate a matrix in
a new memory location (using move or epilog), we start with fresh
index expressions in the nested specs.

To summarize, code generation, including memory allocation
and index computations is straightforward due to our modular IR
design.

3.4.1 Supporting Tensor Cores with Fireiron

To support Tensor Cores, we extend the set of executable specs and
target them using decompositions.

supporting wmma in cuda The WMMA-API [119] in CUDA
introduces warp-wide matrix multiply primitives operating on regis-
ter collections called fragments. For generating kernels using WMMA
primitives, we extend Fireiron in two ways: First, we extend the
memory hierarchy and add a new level Fragment<M,N,K> (labeled
FR if M = N = K = 16) in between shared memory and registers.
Fragments are parameterized because, in the CUDA API, sizes are
part of the fragment type, which must be specified at the allocation.

Second, we define new executable specs corresponding to the
CUDA API calls. Figure 3.11 shows examples of new executable
WMMA specs. Listing 3.3 shows how these additions allow us to
write a strategy targeting the new executable WMMA specs. It com-
putes the matrix multiplication as follows:

1. assign 64× 64 elements to a block (line 2);
2. initialize 16 (4× 4) accumulator fragments (line 4);
3. fill operand fragments (lines 8–9);
4. compute the result (line 10); and
5. store results from fragments to global memory (line 5).

Note that we only need to decompose specs to the level of warps
because of the new warp-level executable specs.
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Figure 3.11: Supporting the CUDA WMMA API in Fireiron by adding new warp-
level executable specifications.

1 val simpleWMMA = MatMul(M,N,K)(GL,GL,GL)(Kernel)

2 .tile(64,64).to(Block)

3 .epilog(FR, // accumulate in warp-level fragments

4 Init.tile(16,16).to(Warp).done, // init strategy

5 Move.tile(16,16).to(Warp).done) // store strategy

6 .split(16)

7 .tile(16,16).to(Warp)

8 .move(MatMul.A, FR, Move.done) // 16x16 A tiles to FR

9 .move(MatMul.B, FR, Move.done) // 16x16 B tiles to FR

10 .done // => residual: MatMul(16,16,16)(FR,FR,FR)(Warp)

Listing 3.3: Simple Fireiron WMMA decomposition describing the implementation
of the first cudaTensorCoreGemm kernel shown in the CUDA samples [115].

supporting mma.sync in ptx Using the mma.sync PTX in-
structions [113] allows even more fine-grained control over how
Tensor Cores are used. First, we define the different mma.sync vari-
ants as executable QuadPair-level specs, as shown at the bottom of
Figure 3.12. We can then flexibly target the new executable specs
in multiple ways. Figure 3.12 shows one possible decomposition
of a contiguous Warp-level MatMul-spec to four strided executable
QuadPair-level specs (indicated by different colors). Here, every
thread of a QuadPair stores four elements from each input operand
and, after collectively executing the mma.sync instruction, contains
eight elements of the C matrix in its registers. We use the layout

refinement for .tile, which we explain shortly, to assign tiles to
quad-pairs in a column-major order.

As the two Tensor Core examples show, supporting new instruc-
tions in Fireiron requires only small changes. It allows us to target
complex low-level PTX instructions using simple high-level abstrac-
tions. With the introduction of new instructions, e.g., the Turing GPU
architecture contains even wider mma instructions, new executable
specs can be added in a similar way.
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Figure 3.12: Supporting mma.sync in Fireiron by decomposing MatMul to the new
QuadPair-level executable spec.

3.4.2 Advanced Optimization using Refinements

Fireiron provides a set of refinements, i.e., optional modifications for
decompositions, which expose more fine-grained control required
to achieve high performance.

.tile refinements By default, tile creates tiles that will be
computed sequentially using nested for-loops. The to refinement
allows us to compute tiles in parallel instead. Internally, Fireiron
uses one-dimensional compute hierarchy indices that are mapped
in a row-major order to the two-dimensional tile arrangement. The
layout refinement allows us to change this order to column-major
and swizzle enables even more complex mappings by first permut-
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ing the one-dimensional indices arbitrarily before assigning them to
the tiles. Using unroll emits #pragma unroll above the loops.

.move refinements The move decomposition can be refined as
well. Using pad(n) modifies the memory allocation for the destina-
tion buffer associated with the created Move spec and allocates n
additional columns to avoid memory bank conflicts. prefetch gener-
ates double-buffered, prefetched versions of the data movement. We
emit __syncthreads() if the destination location is shared memory.
This can be suppressed using noSync in situations in which no ex-
plicit synchronization is necessary. Finally, storageLayout allows us
to specify a row- or column-major storage layout for the destination
buffer.

.split refinements Similar to tile, the split decomposition
can also be refined using unroll, to unroll the generated loop. Using
sync emits __syncthreads(); as the last statement in the body of the
created for-loop, which may be required depending on how shared
memory is used in a strategy.

We are aware that some refinements, especially noSync and sync,
allow the specification of incorrect implementation due to race con-
ditions. However, a decomposition without refinements always gen-
erates correct code. So far, this has caused no problems as Fireiron
is meant to be used by performance experts. We intend to improve
the analyses of strategies to ensure these refinements cannot cause
correctness issues in the future.

3.5 experimental evaluation

In this section, we seek answers to the following questions: If data
movements are as important as we think, how much data movement
code is present in high-performance GPU kernels? Are we able to
express the optimizations experts apply as strategies using Fireiron’s
decompositions? Does the code we generate perform as well as
the manually written implementations? Furthermore, can Fireiron
be used by experts to improve the performance of state-of-the-art
implementations?

references and gpu architectures Table 3.1 shows the
reference implementations used in this evaluation. We choose these
because they apply different optimizations targeting specific GPU
architectures. We used three GPUs: GeForce GTX 750 Ti (Maxwell),
Quadro GV (Volta), and GeForce RTX 2080 Ti (Turing) because they
cover different architectures that need to be optimized differently.
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Reference Description

maxwell Manually-tuned CUDA kernel written by NVIDIA’s per-
formance experts targeting the Maxwell architecture (with-
out Tensor Cores)

wmma Publicly available CUDA sample [115] targeting the
WMMA Tensor Core API

cuBLAS NVIDIA’s high-performance math library (using
cublasGemmEx with Tensor Cores)

Table 3.1: Reference implementations used in the evaluation.

methodology We used CUDA-10.0, Driver Version 425.00 and
compiled kernels using -O3 -use_fast_math -arch= sm_XX where
XX = 52, 70, and 75 for Maxwell, Volta, and Turing respectively. We
locked the clocks to fixed frequencies, report the minimum kernel
runtime of 1000 runs using nvprof, and omit data transfer time since
we are only interested in the quality of our generated kernel code.

The performance reported in Figure 3.1 was measured using pub-
lic Halide [72] and TVM [173] code, their best matrix multiplication
versions we are aware of. At the time of measuring, the hardware
used for the other experiments was not available to us anymore. In-
stead, we used a Titan XP (Pascal, latest architecture without Tensor
Cores) for Halide and a GeForce RTX 2080 (Turing) for TVM because
they target Tensor Cores. The TVM code was tuned according to the
instructions, and we report the best-found performance.

hypothesis a : Code related to data movements makes up a significant
fraction in high-performance kernels.

If this is true, we argue that scheduling languages should treat
data movements as first-class concepts. We find that about 2/3 of a
kernel (in lines of code) is devoted to optimizing data movements.

We count and label the lines of our reference implementations
as either related to data movements or computations. Since there
is not always a clear purpose of a single line of code, we made a
conservative distinction and only count lines for data movements
that are: a) declarations of temporary buffers, b) __syncthreads(),
c) swizzling index computations solely used to avoid bank conflicts,
and finally, loops that only copy data in their bodies. Everything else
counts as ’computation’ lines.

Table 3.2 shows our results. Because cuBLAS is closed-source, we
additionally analyzed the TVM generated code (Figure 3.1), which
contains 49 LoC with a data-movement fraction of 77.6%. We also
analyzed the corresponding Fireiron strategies and generated code
to show how our generated code relates to manually-written code
by performance experts.
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Reference Fireiron Fireiron

Code Strategy Generated Code

maxwell 72 (68.1%) 44 (81.8%) 94 (67.0%)

wmma 122 (41.0%) 26 (76.9%) 113 (65.4%)

cuBLAS closed-source 49 (83.7%) 260 (60.4%) (small)

cuBLAS 46 (84.8%) 309 (72.2%) (large)

Table 3.2: Lines of Code and data-movement related lines (in %) for references,
Fireiron strategies, and generated code. For comparing with cuBLAS, we use two
different strategies, one for small input sizes and one for large ones.

We are aware of our inconclusive small sample size. However,
these numbers already show that data movement optimizations
cannot be neglected as they currently are in existing scheduling
languages. This is further underlined by the performance our data-
movement-heavy kernels achieve (evaluated in Hypothesis C and
D) compared to state-of-the-art implementations.

hypothesis b : Fireiron can express optimizations that are applied by
experts in manually-tuned code.

We find that this is mostly true and that inlining micro-kernels for
sub-specs can circumvent limitations of our scheduling language.

Listing 3.1 implementing the data movement shown in Figure 3.3,
showed how Fireiron allows to describe complex optimizations
as high-level strategies. The optimized data movement is used in
one of our cuBLAS-strategies. Listing 3.4 and Listing 3.5 show two
Fireiron strategies expressing the maxwell, and the wmma reference,
respectively. In the maxwell-strategy, for example, we use different
strategies for moving A (lines 16–20) and B (lines 22–27) to shared
memory because considering the storage layouts separately enables
coalesced global memory loads for both operands. We use swizzling
(line 2) [128], and specify which loops to unroll and where to add
or avoid synchronization with refinements. We also use vectorized
loads (lines 37 and 38) and strided tiles (line 32).

However, the maxwell kernel uses a clever trick in its epilog: It
streams data through shared memory in a way that allows to al-
locate less memory than we currently do. We cannot yet express
this optimization in Fireiron. However, the overall epilog is still
precisely described by a Move specification, allowing us to inline
a micro-kernel during code generation instead (line 13). Having
specifications describing every decomposed sub-problem enables
a fine-grained reuse of efficient implementations as inlined micro-
kernels during code generation.
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1 val swizz: Swizzle = id => // permutation of thread-ids

2 ((id >> 1) & 0x07) | (id & 0x30) | ((id & 0x01) << 3)

3 val storeCUDA: String = //* CUDA Epilog Micro Kernel *//

4 // MATMUL-KERNEL // GEMM_NT (A: ColMajor Layout, B: RowMajor) /////////////

5 val maxwellOptimized = MatMul(M,N,K)(GL,GL,GL)(Kernel)

6 ///// BLOCK-LEVEL /////////////////////////////////////////////////////////

7 .tile(128,128).to(Block).layout(ColMajor)

8 //--- epilog: store results RF => GL ------------------------------------//

9 .epilog(RF, Init // accumulate results in registers

10 .tile(64,32).to(Warp) // allocate 64*32 register per warp

11 .tile(8, 8).to(Thread) // allocate 64 registers per thread

12 .tile(1, 1).unroll.done,

13 Move.done(storeCUDA)) // use microkernel (18 additional LoC)

14 .split(8).sync // Block-tile: 128 x 128 x 8 (M x N x K)

15 //--- move A to SH ------------------------------------------------------//

16 .move(MatMul.A, SH, Move(A:128x8)(GL->SH)(Block)

17 .tile(128, 1).to(Warp) // every warp moves a full column

18 .tile(64, 1).unroll // in two sequential steps (upper/lower half)

19 .tile(2, 1).to(Thread).layout(ColMajor) // vect. 2 values per thread

20 .done).storageLayout(ColMajor).noSync // noSync: We move B next

21 //--- move B to SH ------------------------------------------------------//

22 .move(MatMul.B, SH, Move(B:8x128)(GL->SH)(Block)

23 .tile(8, 16).to(Warp) // use 8 warps in a 1x8 arrangement

24 .tile(8, 4).unroll // each warp moves 4 chunks sequentially

25 .tile(1, 1).to(Thread).layout(ColMajor).done

26 ).storageLayout(RowMajor) // for improving thread-level accesses

27 .pad(4) // for avoiding load/store bank conflicts

28 ///// WARP-LEVEL //////////////////////////////////////////////////////////

29 .tile(64,32).to(Warp) // 8 warps per block, 2x4 arrangement

30 ///// THREAD-LEVEL ////////////////////////////////////////////////////////

31 .tile((4,32),(4,16)) // use strided tiles for improved memory accesses

32 .to(Thread) // assign tiles to threads

33 .swizzle(swizz) // permute thread ids for optimizing accesses

34 .layout(ColMajor) // assign permuted 1D ids in col-major order

35 .split(1).unroll

36 // move A and B to RF--(omit Move details for brevity)-------------------//

37 .move(MatMul.A, RF, Move.tile(4,1).unroll.done) // moving 128 bit ...

38 .move(MatMul.B, RF, Move.tile(1,4).unroll.done) // (4 * FP32)

39 //--- perform computation using FMA -------------------------------------//

40 .tile(1,1).unroll.done // residual spec: MatMul(1,1,1)(RF,RF,RF)(Thread)

Listing 3.4: Fireiron strategy expressing the maxwell reference implementation.
This implementation uses different strategies for moving both operands to shared
memory, strided tiles, and vectorized loads and stores.
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1 val cudaWMMASample = MatMul(M,N,K)(GL,GL,GL)(Kernel) // using FP16

2 ////// BLOCK-LEVEL ////////////////////////////////////////////////////////

3 .tile(128, 128).to(Block) // each block computes a 128x128 output tile

4 .epilog(FR, Init // accumulate in 16x16 fragments

5 .tile(64,32).to(Warp) // assign 64x32 tile to a warp ...

6 .tile(16,16).unroll.done, // that contains 4x2 16x16-WMMA-fragments

7 Move(C:128x128)(FR->GL)(Block) // Epilog in 2 steps: FR -> SH -> GL

8 .move(Move.src, SH, Move // Step 1: FR -> SH

9 .tile(64,32).to(Warp)

10 .tile(16,16).unroll.done) // end Step 1 - results are now in SH ...

11 .tile(16, 128).to(Warp) // Step 2: SH -> GL

12 .tile(1, 128).unroll // achieving coalesced accesses

13 .tile(1, 4).to(Thread).done) // vectorized: 4 values per thread

14 .split(128).sync.unroll // Block-tile 128 x 128 x 128 (M x N x K)

15 //--- move A to SH ------------------------------------------------------//

16 .move(MatMul.A, SH, Move(A:128x128)(GL->SH)(Block) // A in GL: RowMajor

17 .tile(16,128).to(Warp) // 16 rows per warp

18 .tile(2, 128).unroll // 2 rows at a time

19 .tile(1, 8).to(Thread).done).noSync.pad(8) // 8 elements per thread

20 //--- move B to SH ------------------------------------------------------//

21 .move(MatMul.B, SH, Move(B:128x128)(GL->SH)(Block) // B in GL: ColMajor

22 .tile(128,16).to(Warp) // similar move strategy but considering ...

23 .tile(128, 2).unroll // B's ColMajor layout for achieving coalescing

24 .tile(8, 1).to(Thread).layout(ColMajor).done).pad(8)

25 ///// WARP-LEVEL //////////////////////////////////////////////////////////

26 .tile(64, 32).to(Warp)// Warp-tile: 64 x 32 x 16 (including next line) ...

27 .split(16).unroll // -> 4*2*1 (=8) 16x16x16-WMMA computations per Warp

28 //--- fill WMMA fragments for A and B------------------------------------//

29 .move(MatMul.A, FR, Move.tile(16, 16).unroll.done)//target new specs: ...

30 .move(MatMul.B, FR, Move.tile(16, 16).unroll.done)//wmma::load_matrix_sync

31 //--- perform WMMA computation ------------------------------------------//

32 .tile(16,16).done // residual spec: MatMul(16,16,16)(FR,FR,FR)(Warp)

Listing 3.5: Fireiron strategies targeting Tensor Cores using WMMA. Operands are
transferred to 16× 16-WMMA-Fragments which are also used to accumulate the
results.
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Figure 3.13: Comparing Fireiron generated code against two references. We achieve
the same performance while requiring significantly less line of code.

Figure 3.14: Comparing Fireiron-generated code against cuBLAS on large input
matrices, both use Tensor Cores.

hypothesis c : Fireiron-generated code achieves performance close to
expert-tuned code.

Figure 3.13 shows the performance of our generated kernels us-
ing the maxwell strategy (left) and the wmma strategy (right) shown
in Listing 3.4 and Listing 3.5 compared to the reference kernels
executed on multiple architectures. Here, we achieve exactly the
same performance on Volta and Turing and come very close on the
Maxwell architecture compared to the handwritten references while
requiring significantly fewer lines of code.

cuBLAS provides the best implementations available written in
optimized SASS assembly. It contains multiple differently optimized
implementations and chooses one, including tile sizes at runtime,
depending on the input sizes and hardware architecture based on
internal heuristics. For a fair comparison, we use two parameter-
ized strategies (one more suited for smaller, one for larger inputs),
allowing us to explore tile sizes (powers of two: 24–28) and report
the best performance. Figure 3.14 shows the speedup compared to
cuBLAS for large inputs. Here, we exactly match the performance
in three cases, and on average, we achieve 93.1% of the cuBLAS
performance with a minimum of 88.3% in one case and a maximum
of 101% in two cases. These results show that Fireiron generates
code performing close to the practically achievable peak.
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Figure 3.15: Comparing Fireiron-generated code against cuBLAS on small input matrices, both use Tensor Cores.

hypothesis d : Experts can write Fireiron strategies that generate
code which outperforms the state-of-the-art.

Experts were able to define Fireiron strategies outperforming the
manually optimized cuBLAS code by more than 2×.

Figure 3.15 shows the performance achieved compared to cuBLAS
using small input sizes. We can significantly outperform cuBLAS
on the smallest input sizes because there we use better tile sizes:
We generally found a tile size 16× 16 in the M and N dimensions
and 64 in the K dimension, computed by two warps per block, to
perform best. cuBLAS also chose 64 in the K dimension, but larger
sizes for the M and N dimensions, which reduces the available
parallelism.

Our high-level schedule language allowed easy experimentation
with different tile sizes (it requires changing two lines) whose explo-
ration is a tedious and time-intensive process if kernels are devel-
oped in low-level assembly. There, changing tile sizes requires the
adjustment of multiple complex index expressions throughout the
whole kernel.

3.6 conclusion

In this chapter, we introduced Fireiron, a data-movement-aware
scheduling language, IR, and domain-specific compiler for GPUs.
Treating data movements as first-class concepts allows the accurate
description of high-performance GPU kernels as Fireiron strategies.
We introduced specifications for both computations and data move-
ments and decompositions to partially implement and map them
to the multi-layered compute and memory hierarchies. Defining
low-level PTX assembly as well as macro-instructions like WMMA
as executable specs allows us to target specialized hardware like
Tensor Cores flexibly.

Using different matrix multiplication implementations, we
showed that Fireiron can express optimizations used in hand-tuned
kernels written by experts. The code we generate generally matches
the performance of hand-tuned implementations and experts can
use Fireiron to improve the state-of-the-art by outperforming vendor
libraries by more than 2×.
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advantages and drawbacks of the fireiron approach

Fireiron makes use of domain-specific knowledge in two main ways:
Our approach is highly specialized for both, the target architecture
(GPUs) and the target domain (matrix multiplication). First, the ar-
chitecture of modern GPUs, especially their compute and memory
hierarchy, is directly embedded into the core design of Fireiron: For
example, specs are assignable to elements of the compute hierarchy
using tile, and the move decomposition explicitly expresses data
movement between levels of the memory hierarchy. This specializa-
tion allows nested specs to reflect the structure of high-performance
GPU programs naturally. Second, the target domain (in this case, a
single - though pervasive and essential - operation, matrix multipli-
cation), directly dictates the required optimizations we need to be
able to express. Two of the four Fireiron decompositions discussed
in Section 3.3.2 (split and epilog) are specific to matrix multiplica-
tion computations. These are required for expressing optimizations,
like the optimized epilog data movement discussed in Section 3.2,
that are necessary for achieving high performance.

Due to these specializations, we were unable to build upon exist-
ing schedule-based compilers like Halide or TVM. Those especially
lack the support for expressing data movements as first-class con-
cepts in their compilers. Instead, building a domain-specific compiler
from scratch, specialized for our target architecture and domain,
allowed us to achieve performance that significantly outperforms
the state-of-the-art.

As we have shown in this chapter, achieving high-performance
via domain-specific compilation is a desirable approach. Achiev-
ing this level of performance might even be worth the effort of
developing a new compiler from scratch to target new domains or
new hardware. However, it remains a time-intensive process, even
for compiler-experts. For example, developing and evaluating the
Fireiron prototype compiler took about nine months of full-time
work. Therefore, in the following chapters, we show how we can
achieve domain-specific compilation without the need to always start
from scratch. We argue that this is possible by addressing the two
challenges defined in the introduction.

In the next chapter, we will address the Intermediate Representa-
tion Challenge defined in Section 1.2.1 using an extensible IR design
based on functional primitives. Chapter 5 will address the Optimiza-
tion Challenge defined in Section 1.2.2 using a language allowing to
specify optimizations a composable, rewrite-based strategies.





4A G E N E R I C I R F O R D O M A I N -
S P E C I F I C C O M P U TAT I O N S

This chapter is largely based
on the publication
"High-Performance Stencil
Computations with Lift" [70]
by Hagedorn, Stoltzfus,
Steuwer, Gorlatch, and
Dubach published at CGO’18

The IR Challenge:

How to define an IR for
high-performance
domain-specific compilation
that can be reused across
application domains and
hardware architectures while
providing multiple levels of
abstraction? (Section 1.2.1)

In this chapter, we address the Intermediate Representation Chal-
lenge for domain-specific compilation introduced in Section 1.2.1.
We demonstrate how a domain-agnostic, functional intermediate
representation can be extended and used to express domain-specific
computations. Specifically, we extend the Lift IR [162], which so far
has been used for expressing linear algebra computations only, for
supporting the expression of stencil computations. Our extensions
allow to express complex multi-dimensional stencil computations,
and optimizations such as tiling, as compositions of simple 1D Lift

primitives. Crucially, our extensions to the IR for expressing stencil
computations are not stencil-specific but are instead reusable and
repurposable. Our experimental results show that this approach
outperforms existing compiler approaches and hand-tuned codes
in terms of achieved performance. Ultimately, the work discussed
in this chapter demonstrates the possibility of achieving domain-
specific compilation without using a domain-specific IR.

This chapter is largely based on [70], and the acoustic bench-
mark introduced in Section 4.3.5 and evaluated in Section 4.5 was
contributed by Larisa Stoltzfus.

4.1 introduction

Stencils are a family of computations that update elements in a multi-
dimensional grid based on neighboring values using a fixed pattern.
They are used extensively in various application domains such as
medical imaging, e. g., SRAD, numerical methods, e. g., Jacobi or
machine learning, e. g., convolution neural networks. Stencils are
part of the original “seven dwarfs” [7] and are considered one of the
most relevant classes of high-performance computing applications.

The efficient programming of stencils for parallel accelerators
such as Graphics Processing Units (GPUs) is challenging even for
experienced programmers. Hand-optimized high-performance sten-
cil code is usually written using low-level programming languages
like OpenCL or CUDA. Similar to optimizing matrix multiplication
computations, as discussed in the previous chapter, achieving high
performance for stencils requires expert knowledge to manage low-
level hardware details. For instance, special care is required on how
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parallelism is mapped to GPUs or how data locality is exploited
using local memory to maximize performance.

Domain-Specific Languages (DSLs) and high-level library ap-
proaches have been successful at simplifying stencil-based applica-
tion development. These approaches are based on algorithmic skele-
tons [37] that capture recurring patterns of parallel programming.
While these raise the abstraction level, they rely on hard-coded,
not performance portable implementations. Alternative approaches
like Halide [140] or PolyMage [108] are based on code generation.
However, those place a massive burden on the compiler developers
who have to reinvent the wheel for each new application domain
and target hardware.

Lift [162] is a code generation approach based on a high-level,
data-parallel intermediate representation whose central tenet is per-
formance portability. It is designed as a target for DSLs and library
authors and is based on functional principles to produce high-
performance GPU code. Applications are expressed using a small
set of functional primitives, and optimizations are all encoded as
formal, semantics-preserving rewrite rules. These rules define an op-
timization space that is automatically explored for high-performance
code [167]. This approach liberates application programmers and
compiler developers from the tedious process of re-writing and
tuning their code for each new domain or hardware.

This chapter shows how stencil computations and optimizations
are expressible in Lift, reusing its existing machinery for man-
aging parallelism, memory hierarchy, and optimizations. We find
out that surprisingly, only two new primitives are required for
expressing stencil computations, one used for neighborhood gath-
ering and one for expressing boundary condition handling. Every
Lift primitive, as we introduce in Section 4.3.1, is defined to trans-
form simple one-dimensional arrays. We demonstrate how complex
multi-dimensional stencils are expressible as compositions of simple
one-dimensional primitives without introducing specialized higher-
dimensional stencil primitives as often used in related approaches.
This flexibility emphasizes the extensibility of the Lift approach to
new application domains.

This chapter also shows how stencil-specific optimizations, such
as overlapped tiling, are expressible using rewrite-rules in Lift. We
achieve this by reusing existing rules and adding one new rule that
handles the newly introduced primitives. By reusing the existing
Lift exploration mechanism, we can automatically generate high-
performance stencil code for AMD, NVIDIA, and ARM GPUs. Our
results show that this approach is highly competitive with hand-
written implementations and the state-of-the-art PPCG polyhedral
GPU compiler.
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In this chapter, we make the following contributions:

1. We show how complex multi-dimensional stencils are express-
ible using Lift’s existing primitives with the addition of only
two new primitives.

2. We formalize and implement a stencil-specific optimization –
overlapped tiling – as a rewrite rule.

3. We demonstrate that this approach generates high-
performance code for several stencil benchmarks.

The rest of this chapter is organized as follows. Section 4.2 mo-
tivates our work. Section 4.3 shows how stencil computations are
expressed in Lift. Section 4.4 presents stencil-specific optimizations
in Lift expressed as rewrite-rules. Section 4.5 explains how we
generate efficient OpenCL code from stencils expressed in Lift and
provides experimental evidence that this approach achieves high
performance on a selection of GPUs. Finally, Section 4.6 concludes.

4.2 motivation : addressing the ir challenge

The advent of Graphics Processing Units (GPUs) over the past decade
has been the first sign of an increasing trend of diversity in com-
puter hardware. The end of Dennard scaling and Moore’s law forces
computer architects to specialize their designs for increased perfor-
mance and efficiency. Traditional multi-core CPUs from Intel and
AMD are now challenged by more energy-efficient designs by ARM,
massively parallel architectures such as GPUs, and accelerators such
as the Xeon Phi. This diversity in hardware requires massive changes
for software as traditional, sequential implementations are hard to
adapt to this zoo of modern architectures automatically.

4.2.1 High-Level Abstractions for Stencils

Domain-specific languages (DSLs) and libraries help application
developers target modern hardware, shielding them from the ever-
changing landscape. They are commonly accepted as being part
of the solution to address the challenge of achieving performance
portability. DSLs are widely used for stencil computations, which
have been extensively – and successfully – studied in terms of
application-specific optimizations in the high performance comput-
ing community. High-level frameworks such as Halide [141] are
designed specifically to express stencil computations, fuse multiple
operations, and generate parallel GPU code automatically. Similarly,
PolyMage [108] fuses multiple stencil operations and uses the poly-
hedral model to produce parallel CPU code. These approaches are
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Figure 4.1: Vision of a high-performance code-generator used as a universal inter-
face between DSLs and hardware.

particularly good at optimizing long pipelines of stencil operations
typically found in image processing applications.

While DSLs provide an excellent solution for the end-user, they
are costly in terms of compiler development. Each new DSL needs to
implement its own back-end compiler and optimizer with its own
approach to parallelization. This approach is not sustainable, given
the number of application domains and the ever-growing hardware
diversity.

4.2.2 Universal High-Performance Code Generation

What is needed is a compiler approach that can be reused over a
wide range of domains and deliver high performance on a broad set
of devices. Figure 4.1 shows our vision of a universal compiler be-
tween DSLs and hardware, which was first proposed by Delite [170].
Delite advocates the use of a small set of parallel functional primi-
tives upon which DSLs are implemented. A hardware-specific back-
end takes care of compiling and optimizing these primitives down
to high-performance GPU code, enabling all the DSLs implemented
on top of Delite to benefit from these optimizations. This type of
approach can lead to excellent performance for many domains on
a specific parallel device and, in particular, for stencil code. In this
chapter, we build upon this approach but define and extend an
IR for which we can use a single back-end that can generate high-
performance code for different hardware devices.

Lift [162, 166, 167] has recently emerged as a novel approach to
address the performance portability challenge. It follows a similar
philosophy as Delite by offering a small set of data-parallel patterns
used to express higher-level abstractions. In contrast to Delite, Lift

generates high-performance code by encoding algorithmic choices
and device-specific optimizations as provably correct rewrite rules.
This design makes it easy to extend and add new optimizations
into the compiler, in contrast to Delite, where optimizations are
hard-coded for each back-end.
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Primitives

Rewrite Rules

map

split

reduce

…zip
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pad

map(f) � map(g) 7! map(f � g)

map fusion

exploit local memory

vectorization…

+

Lift

Overlapped
Tiling

map(f, slide(. . .))
7! . . .

Figure 4.2: Additions to Lift proposed for supporting stencils. Only two new
primitives and a rewrite rule implementing the overlapped tiling optimization are
added.

Lift has demonstrated that high performance is achievable for
linear algebra operations [166]. In this chapter, we take the Lift

approach a step further and show how it can also be applied, with
few modifications, to stencil computations. By successfully using
the pattern-based, domain-agnostic Lift IR for a new domain not
targeted so far, we show that this approach is superior to existing
domain-specific compilers as it can be simply extended as required.
In particular, we show how complex multi-dimensional stencils
are expressible by composing a handful of simple 1D primitives.
Additionally, we strive to leverage existing functionality in Lift,
inheriting the benefits of automatic exploration of algorithmic and
device-specific optimizations.

4.3 a pattern-based approach for expressing stencils

Figure 4.2 shows the new extensions to Lift for supporting stencil
computations. These are described in this and the following sec-
tion. Only minor additions are required to support stencils and to
generate high-performance code across multiple parallel devices.

We begin by describing the existing Lift primitives we reuse
before introducing the two new primitives slide and pad that allow us
to express stencil computations in a functional style. After discussing
a one-dimensional stencil example, we introduce the handling of
multi-dimensional stencils expressed by composing the fundamental
1D primitives.
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4.3.1 Existing High-Level Lift Primitives

Lift was introduced in [162] and offers a small collection of data-
parallel functional primitives. Prior work has shown that it is pos-
sible to compile these using rewrite-rules into code that runs effec-
tively on GPUs [167]. The most relevant primitives, which we also
reuse to express stencil applications, are shown below with their
types to explain how these primitives can be composed.

map : (f : T → U, in : [T ]n)→ [U]n

reduce : (init : U, f : (U, T)→ U, in : [T ]n)→ [U]1

zip : (in1 : [T ]n, in2 : [U]n)→ [{T ,U}]n
iterate : (in : [T ]n, f : [T ]n → [T ]n, m : Int)→ [T ]n

split : (m : Int, in : [T ]n)→ [[T ]m]n/m

join : (in : [[T ]m]n)→ [T ]m×n

at :(i : Cst, in : [T ]n)→ T

get :(i : Cst, in : {T1, T2, . . .})→ Ti

array :(n : Int, f : (i : Int, n : Int)→ T)→ [T ]n

userFun : (s1 : ScalarT, s2 : ScalarT ′, . . .)→ ScalarU

We write [T ]n for an array with n elements of type T . Note that
arrays can be nested and carry their size in their type. We write
{T1, T2, . . .} for a tuple with component types Ti. Finally, T → U

denotes a function type expecting a value of type T and returning a
resulting value of type U.

map, reduce , and iterate The map primitive applies a func-
tion f to all elements of an array and produces a new array of
the same length. In Lift, this is the only primitive that expresses
data parallelism. reduce applies a reduction operator f to an array
by traversing it, applying f to the elements, and an accumulator
variable initialized with the given init value. iterate performs m
iterations of a function f reusing the output produced as an input
for the next iteration. While this chapter evaluates single iteration
stencils only, the iterate primitive can be used to perform multiple
stencil iterations.

zip, split, and join zip creates an array of tuples {T ,U} by
combining two input arrays of the same length. split introduces an
additional dimension, by splitting the input array into chunks of
size m, where m is a positive number evenly dividing the input size
n. join performs the opposite operation and flattens two adjacent
dimensions by concatenating their elements.
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1 for(int i = 0; i < N; i++) {

2 int sum = 0;

3 for(int j = -1; j <= 1; j++) { // (a) define a neighborhood (nbh)

4 int pos = i+j;

5 pos = pos < 0 ? 0 : pos; // (b) perform boundary handling

6 pos = pos > N-1 ? N-1 : pos;

7 sum += A[pos]; } // (c) compute the output using the nbh

8 B[i] = sum; }

Listing 4.1: A simple 3-point jacobi stencil code written in C.

array and tuple accesses The at primitive enables the in-
dexing of arrays with constant (literal) indices. For stencils, this is
useful for accessing the elements which define the stencil shape. For
the rest of this chapter, we write in[3] as syntactic sugar for at(3, in)
to express the access of the fourth element in the array in.

Similarly, the get primitive provides access to the components of
a tuple. For instance, get(2, in) returns the second component of
tuple in. For the rest of this chapter, we write in.2 as syntactic sugar
for get(2, in).

array constructor The array primitive constructs array ele-
ments lazily by invoking the function f with index i and array length
n. Later, we show how this primitive is used for creating masks that
can be useful for particular multi-dimensional stencils.

userfun Finally, userFuns define arbitrary functions operating
on scalar types such as Float or Int. These functions are written in C
and are embedded in the generated OpenCL code.

4.3.2 Extensions for Supporting Stencils

It is not possible to express stencil computations in Lift using only
the existing primitives because they are too restrictive. Therefore,
we need to add one or more new primitives to the existing Lift IR.

The naive way to add support for expressing stencil computations
in Lift would be to use a single new high-level stencil primitive. This
approach is common and often seen in other high-level approaches,
e.g., [31, 32, 164]. However, in Lift, we avoid adding domain-specific
primitives and instead express stencil computations using reusable
domain-agnostic building blocks that are not stencil-specific.

Using an example, we show that stencil computations can be
decomposed into three fundamental steps. Consider the simple
stencil example expressed as C code shown in Listing 4.1. Here a
3-point stencil is applied to a one-dimensional array A of length N
that sums the elements for each neighborhood.



66 a generic ir for domain-specific computations

...

3-point stencil

input

output

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 90 9

1 2 3

boundary handling 
using pad

create neighborhoods
using slide 

compute output element
  using map stencilfunction
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2

3

0 1 2 1 2 3 8 9 9

Figure 4.3: Expressing a stencil in Lift using pad for boundary handling, slide for
creating the neighborhood, and map to compute the output elements. These three
logical steps are compiled into a single efficient OpenCL kernel by Lift.

As denoted in the comments, stencil computations generally con-
sist of three fundamental parts:

(a) for every element of the input, a neighborhood is accessed speci-
fied by the shape of the stencil (line 3);

(b) boundary handling is performed that specifies how to handle
neighboring values for elements at the borders of the input
grid (lines 5 and 6);

(c) finally, for each neighborhood, their elements are used to com-
pute an output element (line 7).

For supporting stencils in Lift, we add two new primitives to
perform the first two steps: boundary handling and neighborhood
creation. The last step is expressible by reusing an already existing
primitive. Following Lift’s design goal, each primitive expresses a
single concept, and complex functionality is achieved by composi-
tion. The first new primitive pad handles boundary conditions, and
the second new primitive slide expresses element grouping.

boundary handling with pad pad adds elements to the be-
ginning and end of an array. We define two variants of the pad
primitive, allowing to add elements in different ways: A first variant
reindexes into the input array; a second variant appends values
computed by a user-specified function. We write pad for both as they
can be distinguished based on their unique type.
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For stencil computations, pad is used to express what happens
when we reach the edge of the input array. Step 1 in Figure 4.3
visualizes boundary handling with pad. Here, the input array on the
top is enlarged with one element on each side, as highlighted with
dashed lines. This way of boundary handling is usually referred to
as a clamping.

The pad primitive for reindexing has the following type:

pad :
(

l : Int, r : Int,
h : (i : Int, len : Int)→ Int,
in : [T ]n

)
→ [T ]l+n+r

The pad primitive adds l and r elements to the beginning and end
of the input array in, respectively. It uses the index function h to
map indices from the range [0, l+ n+ r] into the smaller range of
the input array [0,n]. The elements added at the boundaries are,
thus, elements of the input array, and h is used to determine which
elements to use. For instance, by defining the following function:

clamp ( i , n ) = ( i < 0 ) ? 0 : ( ( i >= n ) ? n−1 : i )

it is possible to express the clamping boundary condition that artifi-
cially extends the original input array by two elements to the left
and three to the right by repeating the value at the boundary. In the
extended version of Lift, we write pad(2, 3, clamp, input).

Indexing functions implementing mirroring or wrapping are sim-
ilarly defined. Indexing functions must not reorder the elements
of the input array, but only map indices from outside the array
boundaries into a valid array index.

The pad primitive to append values has a similar type:

pad :
(

l : Int, r : Int,
h : (i : Int, len : Int)→ T ,
in : [T ]n

)
→ [T ]l+n+r

Here, the function h produces a value (i.e., an element of type T ),
which is added to the ends of the array. This variation of pad is
used to implement constant boundary conditions to, for example,
append zeros at the boundaries as often used in machine learning
computations. Another use-case for this version of the pad primi-
tive is dampening where the out-of-bound values decrease with the
distance to the boundary.

creating neighborhoods with slide The slide primitive
creates a nested array of neighboring elements. Conceptually, it uses
a sliding window of a particular size that moves with a given step
along the input array. For a one-dimensional 3-point stencil we write:
slide(3, 1, input).
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1 val sumNbh = fun(nbh => reduce(add, 0.0f, nbh))

2 val stencil =

3 fun( A: Array(Float, N) =>

4 map(sumNbh, // (c) computing the stencil function

5 slide(3, 1, // (a) neighborhood creation

6 pad(1, 1, clamp, A)))) // (b) boundary handling

Listing 4.2: A 3-point jacobi stencil expressed in Lift.

Figure 4.3 shows the effect of applying slide in the second step.
Here, each element of the output array is itself an array of three
elements. The second element of the first inner array is hereby also
the first element of the second array. This corresponds to the notion
that we group the first three elements together before moving the
sliding window by one element.

The type of slide is defined as:

slide : (size: Int, step: Int, in: [T ]n)→ [[T ]size]n−size+step
step

We will later show how this primitive is used to create multi-
dimensional neighborhoods. Note that the existing split Lift primi-
tive can now be implemented in terms of the more expressive slide
primitive: split(n, in) = slide(n,n, in).

computing the stencil for a neighborhood with map
The map primitive is the only way in Lift to express data parallelism.
As stencils are naturally data-parallel, we express the last step of the
stencil computation using the map primitive. This step takes arrays
of neighborhoods as input and performs the stencil computation to
produce a single output value for each neighborhood.

4.3.3 One-dimensional Stencil Example in Lift

Listing 4.2 shows a basic 3-point stencil expressed in Lift. This
computation is the same example we saw in Listing 4.1. Due to
the functional style, the Lift expression reads from bottom to top.
We can see the decomposition in three logical steps: first, boundary
handling is performed (line 6) using pad; then, the neighborhoods are
created (line 5) using slide; finally, map is used (line 4) to perform the
computation for every created neighborhood using sumNbh (line 1).

It is important to emphasize that the logical distinction of these
three steps will not be echoed in the generated OpenCL code. The
boundary handling and creation of neighborhoods are not per-
formed by copying elements in memory. Instead, they are combined
with the last step into a single computation by creating a compiler-
internal data structure, called view in Lift [167], which influences
how data will be read from memory.
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4.3.4 Multi-dimensional Stencils in Lift

One of the crucial concepts of our approach is the ability to ex-
press complex multi-dimensional stencils as compositions of simple
one-dimensional primitives. We will now show how we define n-
dimensional versions mapn, padn, and sliden as compositions of the
simple pad, slide, and map primitives we have just seen.

Defining these multi-dimensional abstractions allows us to express
multi-dimensional stencils following the same structure as the one-
dimensional stencil expression:

mapn(f, sliden(size, step, padn(l, r, h, input)))

Boundary handling is performed via padn using the function h. Here
we present the simple case where the same boundary handling
strategy is performed in each dimension. It is straightforward –
and supported by our implementation – to apply different bound-
ary handlings per dimension. The sliden creates an n-dimensional
neighborhood, which is then processed by mapn.

multi-dimensional boundary handling Boundary han-
dling in multiple dimensions follows the same idea as in the one-
dimensional case. Using nested maps, we apply pad to inner dimen-
sions. Thus, padn is defined recursively:

pad1(l, r, h, input) = pad(l, r, h, input)

padn(l, r, h, input) = mapn−1(pad(l, r, h),

padn−1(l, r, h, input))

where mapn are n nested maps:

map1(f, input) = map(f, input)

mapn(f, input) = mapn−1(map(f), input)

The base case is the simple one-dimensional pad. The higher di-
mensional padn case applies a pad once in every dimension using
nested maps to apply it to the inner dimension. The recursive mapn
is defined as a nesting of n maps.

We provide a simple 2D example for pad2 using the clamp bound-
ary handling, which repeats the values at the boundary. We add
explicit parentheses to show the dimensionality of the arrays and
additionally arrange the input and output two-dimensional arrays
as matrices to visually highlight the effect of multi-dimensional
padding.
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pad2(1, 1, clamp,

[
[a, b],

[c, d]

]
) =

map(pad(1, 1, clamp), pad(1, 1, clamp,
[
[a, b], [c, d]

]
)) =

map(pad(1, 1, clamp),
[
[a, b], [a, b], [c, d], [c, d]

]
) =

[a, a, b, b],

[a, a, b, b],

[c, c, d, d],

[c, c, d, d]


After expanding the definition of pad2, we first apply pad to the outer
dimension of the two-dimensional array, resulting in an enlarged
array where the first and last element – themselves both arrays – are
prepended and appended. Then, in the second step, pad is applied to
the nested dimension using the map primitive, which applies pad to
every nested array resulting in the final two-dimensional array. As
expected, the output array contains the input array with additional
rows and columns resulting from applying pad twice.

This example already demonstrates the expressiveness of compos-
ing simple one-dimensional primitives to higher-level abstractions
without the need to define them as built-in constructs in the IR
themselves.

multi-dimensional neighborhood creation The creation
of multi-dimensional neighborhoods is more complicated than the
multi-dimensional boundary handling. However, it follows a similar
idea: We compose the simple one-dimensional slide primitive and
apply it once per dimension.

For the two-dimensional case, slide2 is defined as:

slide2(size, step, input) =

map(transpose,

slide(size, step,

map(slide(size, step), input)))

We explain this definition using an example. In the following, we
use a two-dimensional matrix as input and apply slide2(2,1,input).
This way, we conceptually slide a window of size 2× 2 across the
input and obtain a four-dimensional result.
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slide2(2, 1,

 [a, b, c],

[d, e, f],

[g, h, i]

) =
map(transpose, slide(2, 1,

map(slide(2, 1),
[
[a, b, c], [d, e, f], [g, h, i]

]
))) =

map(transpose, slide(2, 1,[
[[a, b], [b, c]], [[d, e], [e, f]], [[g, h], [h, i]]

]
)) =

map(transpose,[
[ [ [a, b], [b, c] ], [ [d, e], [e, f] ] ],

[ [ [d, e], [e, f] ], [ [g, h], [h, i] ] ]

]
)) =


[ [

[a, b],

[d, e]

]
,

[
[b, c],

[e, f]

]]
,[ [

[d, e],

[g, h]

]
,

[
[e, f],

[h, i]

]]


The resulting four-dimensional array is created out of four 2× 2
neighborhoods. These are created by applying slide to the inner and
then the outer dimension before using map(transpose) to swap the
two inner dimensions.

Again, we are able to generalize the definition of slide2 to a multi-
dimensional sliden case that, when applied to an n-dimensional
input, creates n-dimensional inner neighborhoods. The general struc-
ture remains similar to the two-dimensional case:

sliden(size, step, input) =
reorderingDimensions(

slide(size, step,
map(sliden−1(size, step, input))))

We first recursively apply the sliding in all nested dimensions for
the n-dimensional input using map(sliden−1). Then we apply slide
to the last missing outermost dimension. This way, we have now
applied slide exactly once to all dimensions of the input.

In the last step, we must reorder the dimensions, so that the
nested dimensions created by the slides are the innermost ones.
In the 2D case, a single map(transpose) achieved this; However, it
is more complicated in the multi-dimensional case. This required
reordering is best understood by looking at the types involved. For
a three-dimensional array, after applying slide in each dimension,
we obtain an array of this type: [[[[[[T ]so ]o]sn ]n]sm ]m, where sm
and m are the two dimensions resulting from applying slide to the
outermost dimension. By rearranging the dimensions, we obtain
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an array of type: [[[[[[T ]so ]sn ]sm ]o]n]m, which corresponds to the
desired result: a three-dimensional neighborhood. The rearranging
is realized purely as a combination of map and transpose calls that
swap individual dimensions.

4.3.5 Case Study: Room Acoustics Simulation

Listing 4.3 shows a real-world stencil application used for modeling
room acoustics developed by HPC physicists [186] and models the
behavior of a sound wave propagating from a source to a receiver
in an enclosed 3-dimensional space.

The two inputs used in this benchmark (gridt−1 and gridt in
lines 1- 2) indicate previous and current time steps to update the
state of the room across time. This type of inputs is often found
in real-world physical simulations, spanning three dimensions for
physical space and one dimension for time. The first grid is taken
point-by-point; however, the second grid uses slide3 to form stencil
neighborhoods. The number of neighborhoods correctly matches up
to the size of the gridt input array as the gridt−1 input is padded
using pad3 first, so that no out-of-bounds accesses occur. These
inputs are then zipped together with their number of neighbors
resulting in a tuple of: {valuet−1, neighborhoodt, numNeighbors}
as seen in lines 12- 14.

In lines 4- 6, the stencil is computed by accessing the neighbor-
hood’s values using the at primitive (written as [ ]). The results are
then combined with the other inputs in an equation to model the
sound (lines 8–11).

A difficult problem for wave-based simulations is the accurate
handling of physical obstacles in the room. The variable coefficients
(a. k. a. “loss”) at the obstacle’s boundary are handled through the
use of a mask. This mask returns a different value depending on
whether it is on an obstacle or not. In Lift, this mask is calculated
on the fly using the array3d generator and contains a value at each
point in the grid.

4.3.6 Summary

In this section, we have demonstrated how stencils are expressed
in Lift by extending the set of primitives by two new additions:
pad and slide. Together with existing Lift primitives, this allows
for expressing multi-dimensional stencils as compositions of the
one-dimensional building blocks. Crucially, neither pad nor slide are
inherently stencil-specific but rather simple primitives that modify
one-dimensional arrays in a new way. This design allows us to
repurpose and use them for different use cases, as we will see in
the next section. This repurposing would not have been possible
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1 acousticStencil(gridt−1:[[[Float]m]n]o,

2 gridt:[[[Float]m]n]o) {

3 map3(m -> {

4 val sumGridt−1 =

5 m.1[0][1][1] + m.1[1][0][1] + m.1[1][1][0] +

6 m.1[1][1][2] + m.1[1][2][1] + m.1[2][1][1]

7 val numNeighbor = m.2

8 return getCF(m.2, CSTloss1, 1.0f) * ( (2.0f -

9 CSTl2 * numNeighbor) * m.1[1][1][1] +

10 CSTl2 * sumGridt−1 - getCF(m.2,

11 CSTloss2, 1.0f) * m.0) },

12 zip3(gridt,

13 slide3(3, 1, pad3(1,1,1,zero,gridt−1)),

14 array3(m,n,o,computeNumNeighbors))) }

Listing 4.3: A 3D time-stepped room accoustics simulation expressed in Lift.

if we had decided to build a new stencil primitive as often found
in other domain-specific compilers. Additionally, the parallelism
found in stencil applications is expressed using the existing map
primitive, without introducing a special case for stencils. Rewrite
rules explaining how to optimally leverage OpenCL hardware using
map are then reusable for stencil applications as we show next.

To summarize, so far we have been able to avoid the disadvantages
of defining domain-specific IR constructs while still being able to
express complex multi-dimensional domain-specific computations
in our IR by:

1) decomposing typical stencil computations into three funda-
mental building blocks (1. neighborhood creation, 2. boundary
handling, 3. output computation) and defining flexible and
domain-agnostic new pad and slide primitives for expressing
the first two parts.

2) composing simple one-dimensional primitives for expressing
higher-dimensional computations, avoiding the need to define
specialized higher-dimensional abstractions directly in the IR.

3) reusing the map primitive to express data-parallel computa-
tions in stencils allowing to reuse existing map-related rewrite
rules.

4.4 optimizing stencils using rewrite rules

This section discusses how stencil-specific optimizations can be ex-
pressed as rewrite rules. We will add a new rewrite rule, which is
used together with Lift’s existing rules to explore the implementa-
tion space of stencil applications. By applying different rewrites, we
can tailor programs to target different architectures, thus, achieving
performance portability.
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Figure 4.4: Overlapped tiling for a 3-point stencil.

1 fun( A: Array(Float, N) =>

2 map(tile => map(sumNbh, // compute output by accumulating nbh-elements

3 slide(3, 1, tile), // use slide to create neighborhoods within tiles

4 slide(5, 3, // repurpose slide to create overlapping tiles

5 pad(1, 1, clamp, A)))) ) // boundary handling as usual

Listing 4.4: A 3-point stencil using overlapped tiling.

4.4.1 Exploiting Locality through Tiling

Stencil applications involve local computations that only access
elements in a neighborhood. Furthermore, neighboring elements in a
grid share large parts of their neighborhoods. Exploiting this locality
is the most commonly used and most successful optimization for
stencil computations.

On GPUs, the fast but small local memory (shared memory in the
CUDA terminology) can be used as a programmer-controlled cache.
For stencil computations, this allows us to cache a set of neighbor-
hoods and load elements from the slow global memory only once.
Successive accesses by threads that share the same neighborhood
elements are then made from the faster local memory.

Traditionally, locality in stencils is exploited using the overlapped
tiling optimization [60, 62, 194]. The input grid is divided into tiles
that overlap at the edges to allow every grid element to access its
neighboring elements. The size of the neighborhood determines the
size of the overlap.

Figure 4.4 shows overlapped tiling for a 3-point one-dimensional
stencil. The left-hand side shows a single tile of five elements. Here
we can see the reuse of data where the highlighted computation
on the left shares two elements from the tile with the computation
in the middle. Assuming that one thread computes one output
element, without overlapped tiling in shared memory, all three
threads assigned to this tile would have to access the same three
elements in the middle of the tile from the slow global memory. On
the right-hand side, we can see the overlap between the left and
right tiles. These two elements are available in both tiles.
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...

...

slide (5, 3)

input

array of 
overlapping tiles

array of tiles 
containing 
neighborhoods

output

map (slide (3, 1))

Figure 4.5: Expressing overlapped tiling using slide: Applying slide to the input
creates overlapping tiles. Applying slide to every tile creates the required neighbor-
hoods.

representing overlapped tiling in lift We reuse the slide
primitive to represent overlapping tiles. Listing 4.4 shows the Lift

expression of the 3-point stencil using tiling. The slide primitive is
used twice: in line 3, a neighborhood is created, as explained earlier,
but in line 5, overlapping tiles are created instead of neighborhoods.
Due to the parameter choice, (5 and 3) in this case, five elements
are grouped in a tile (compare with Figure 4.4), with two elements
overlapping with the next tile.

Figure 4.5 shows the creation of tiles in the first step. Afterward,
for each tile, we create the local neighborhoods using the slide
primitive as before.

tiling as a rewrite rule Encoding the tiling optimization
as a rewrite rule makes it accessible to Lift’s automatic exploration
process. One-dimensional tiling is expressible as follows:

map(f, slide(size, step, input)) 7→
join(map(tile⇒ map(f, slide(size, step, tile)),

slide(u, v, input)))

The parameters u and v have to be selected appropriately, i.e., the
difference between the size and step has to match the difference of
u and v: size−step = u− v. Figure 4.4 visualizes this constraint for
the one-dimensional 3-point Jacobi where the neighborhood size
is 3 (and the step is 1). When choosing the size of the tile u, e.g.,
5 in the example, v must be selected to match the formula (i.e., 3

in this case) as 3− 1 = 5− 3. This is the only correct choice for v
because it determines the overlap created between the tiles, which
correlates with the size of the original neighborhood. Choosing u
and v according to the formula ensures that we create the same
number of neighborhoods on both sides of the rewrite rule.
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Figure 4.6: Applying overlapped tiling in two dimensions.

For more straightforward reasoning about the tiling rule, we can
decompose it into two smaller rules:

map(f, join(input)) 7→ join(map(map(f), input))

and

slide(size, step, input) 7→
join(tile⇒ map(slide(size, step, tile)),

slide(u, v, input))

Here, on both sides of the first rule, the function f is applied to
each element of the two-dimensional input. On the left-hand side,
this is done by flattening the input and then applying the function,
whereas on the right-hand side the function is first applied to each
element of the input and then flattened afterwards.

Assuming that u and v are valid parameter choices as described
above, the correctness of the second rule is also straightforward.
Starting on the right-hand side, we create tiles using the first slide
primitive. Then, we perform the second slide for each created tile,
before the join removes the outermost dimension and, therefore,
resolves the tiles, leaving us with a two-dimensional array equivalent
to the array produced by only applying the second slide.

multi-dimensional overlapped tiling as rewrite rules

Our extension to Lift fully supports tiling in arbitrarily high di-
mensions due to the compositional nature of expressing computa-
tions and optimizations. Figure 4.6 visualizes the overlapped tiling
optimization applied in two dimensions. The optimization rules
for tiling higher-dimensional stencils are expressed by reusing the
one-dimensional primitives. The rewrite rule implementing two-
dimensional tiling looks similar to the one-dimensional case when
written with the high-level map2 and slide2 abstractions introduced
previously:

map2(f, slide2(size, step, input)) 7→
map(join, join(map(transpose,
map2(tile⇒ map2(f, slide2(size, step, tile)),

slide2(u, v, input)))))
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Also note that even though we reuse the one-dimensional primi-
tives to express a two-dimensional tiling rule, we do not reuse the
one-dimensional tiling rule itself. Instead, we define a new rule
specialized for two dimensions. Chapter 5 introduces an approach
that allows us to reuse existing rewrite rules by composing rules to
what we call strategies similar to how we composed primitives to
more complex computations in this chapter.

In the following, we briefly discuss two other optimizations en-
coded as rewrite rules in Lift. Those are also used in the automatic
exploration process. In Chapter 5, we discuss in detail how to im-
plement these and other optimizations as composable and reusable
rewrite strategies.

4.4.2 Usage of Local Memory

Tiling is used to exploit locality. Modern GPUs have relatively small
caches and rely on the programmer explicitly using the fast scratch-
pad shared memory called local memory in OpenCL. As discussed
in Chapter 3, using shared memory efficiently can be cumbersome.
Furthermore, it does not always improve the achieved performance,
as we will see in the following evaluation. Whether or not the use
of local memory is beneficial depends on the hardware architecture
and the amount of data reuse in the stencil application.

In Lift, we address these issues by expressing the local memory
usage as a rewrite rule. When exploring the optimization space,
this rule will be one of many optimization choices applied in the
automatic optimization process.

Besides the high-level primitives introduced in Section 4.3, Lift

also defines OpenCL-specific low-level primitives [69, 162] to exploit
particular features of OpenCL, such as the use of the local memory.
The toLocal primitive, for example, wraps around a function to
indicate that this function should write its result into local memory.
To copy a single scalar value into local memory, we can use the
identity user function id, as in: toLocal(id). For copying arrays, we
wrap the map(id) function in toLocal.

As copying data into local memory is always legal inside an
OpenCL workgroup, we use the existing Lift rewrite rule to express
this:

map(id) 7→ toLocal(map(id))

Together with a rule that introduces map(id) at any position, it al-
lows the exploration of copying to local memory as an optimization.
Currently, heuristics are used to prevent applying this rule at unfa-
vorable locations within a Lift expression.
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4.4.3 Loop Unrolling

Unrolling loops is a traditional low-level optimization that can
significantly increase performance for some instances. To explore
loop unrolling as an optimization for stencil applications, we reuse
an existing variation of the reduce primitive unrolled by the Lift

compiler. As we saw in the 3-point stencil example in Listing 4.2, the
reduce pattern is often used in stencil computations to sum up the
values in a neighborhood. The unrolled variation of the reduction is
called reduceUnroll and has a matching rewrite rule providing it as
an optimization choice during exploration. Unrolling is only legal if
the size of the input array has a length which is known at compile
time. For stencils, this is usually the case, as the reduction is applied
to a neighborhood which almost always consists of a fixed number
of elements.

4.4.4 Summary

In this section, we have shown how stencil optimizations are ex-
pressed as rewrite rules, which are then applied by the Lift ex-
ploration process. Overlapped tiling in multiple dimensions is ex-
pressed by reusing ideas of the simple one-dimensional case. With
low-level optimizations, such as local memory usage, we can auto-
matically explore a variety of optimizations for stencil applications.

4.5 experimental evaluation

In this section, we briefly discuss Lift’s code generation and eval-
uate the performance achieved by the kernels generated using the
approach discussed in this chapter.

code generation A stencil program expressed using pad, slide,
and map is rewritten into a Lift expression using low-level, OpenCL-
specific primitives. These low-level primitives explicitly encode im-
plementation and optimization choices like the use of local memory.

We did not need to extend the original set of existing low-level
primitives [162]. We will discuss and introduce these primitives in
detail in the following chapter when we discuss how to encode
low-level optimizations as rewrite strategies for addressing the Op-
timization Challenge identified in Section 1.2.2.

The OpenCL code generation is mainly unchanged from the com-
pilation of Lift programs, as described in [167]. The overall com-
pilation flow consists of multiple stages, including type analysis,
memory allocation, array access computation and simplification,
and synchronization elimination.
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extending lift’s view system Lift uses so-called views when
implementing primitives, which modify data layout without per-
forming computations themselves. These operations are not per-
formed in memory but define how primitives read input data. Exam-
ples for such so-called data-layout primitives are split and join whose
view construction and consumption is further described in [167].
Pad and slide are implemented using the same approach [65].

Data-layout primitives are integrated with Lift’s view system
and are not directly compiled to OpenCL code. For example, pad
does not initiate the allocation of a new enlarged array in memory.
Instead, the reindexing of computations introduced with pad is
performed when the padded array is read for the first time. Similarly,
the slide primitive does not physically copy created neighborhoods
into memory. Slide refers accesses to elements of a neighborhood
back to the original array. This way accesses to the same element
in different neighborhoods result in memory accesses from the
same physical location. This technique allows the expression of
complex - potentially multi-dimensional - abstractions in Lift that
are nevertheless compiled to efficient OpenCL code.

4.5.1 Experimental Setup

methodology Experiments are conducted using single pre-
cision on a Tesla K20c with CUDA 8.0 driver version 367.48; an
AMD Radeon HD 7970 with OpenCL version 1.2 AMD-APP (1912.5);
and the SAMSUNG Exynos 5422 ARM Mali GPU with OpenCL 1.2
v1.r17p0. The ARM GPU significantly differs from the two other
GPUs because it is mostly designed to be used in low-power embed-
ded systems such as smartphones. Achieving high performance on
this set of GPUs thus demonstrates the capability of our approach
to be reusable across diverse architectures, one of the main goals
identified in the IR Challenge (Section 1.2.1).

The medians of 100 executions are reported measured using the
OpenCL profiling API. Data transfer times are ignored since the
focus is on the quality of the generated kernel code.

benchmarks The Lift-generated kernels are compared to hand-
tuned and automatically-generated kernels from the PPCG [179]
state-of-the-art OpenCL polyhedral compiler. We collected hand-
written kernels from SHOC (v1.1.5), Rodinia (v3.1), and an OpenCL
version of the acoustics simulation code discussed in Section 4.3.5.
We hard-coded each benchmark to perform a single iteration of the
stencil computation. We also collected a series of single-kernel C
codes that work with the PPCG compiler from a recent study [146,
147], provided by the authors. Table 4.1 lists these benchmarks along
with their key characteristics.
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Benchmark Dim Pts Input size #grids

Stencil2D [40] 2D 9 4098×4098 1

SRAD1 [27] 2D 5 504× 458 1

SRAD2 [27] 2D 3 504× 458 2

Hotspot2D [27] 2D 5 8192×8192 2

Hotspot3D [27] 3D 7 512×512×8 2

Acoustic [168] 3D 7 512×512×404 2

Gaussian [147] 2D 25 40962 / 81922 1

Gradient [147] 2D 5 40962 / 81922 1

Jacobi2D [147] 2D 5/9 40962 / 81922 1

Jacobi3D [147] 3D 7/13 2563 / 5123 1

Poisson [146] 3D 19 2563 / 5123 1

Heat [146] 3D 7 2563 / 5123 1

Table 4.1: Benchmarks used in the evaluation.

4.5.2 Auto-Tuning

As explained in the previous sections, the Lift approach exposes op-
timization choices via rewrite rules, which leads to several differently
optimized low-level Lift expressions per benchmark. Each of these
low-level expressions contains several tunable parameters. These pa-
rameters control, for instance: local/global thread counts (local-size
and global-size in the OpenCL terminology), tile sizes, how much
work a thread performs (sometimes also called the thread-coarsening
factor), or how memory accesses are reordered. The parameters
of each Lift expression are fine-tuned using the ATF auto-tuning
framework [142, 143]. ATF builds on top of OpenTuner [6], a classic
auto-tuner that uses an ensemble of effective search techniques to
optimize a user-specified metric (execution time in our case). Addi-
tionally, ATF allows the specification of inter-parameter constraints
in the search space. For example, when tuning OpenCL thread sizes,
the local-size must evenly divide the global-size, which can be spec-
ified as a constraint on the parameters in ATF. The auto-tuner was
used for a maximum of three hours per benchmark for tuning all
low-level expressions.

The PPCG compiler used in our comparison exposes global/local
thread counts and tile sizes as tunable parameters in each dimension.
We also use ATF and OpenTuner for finding the best combination of
these parameters, with again a maximum tuning time of three hours
per benchmark. For both Lift and PPCG, the auto-tuner has been
configured to take the OpenCL specific constraints into account (e. g.,
global thread counts should be a multiple of local thread counts).
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4.5.3 Comparing against Handwritten Benchmarks

This section presents the results of the exploration and auto-tuning
process. It also shows the performance achieved by handwritten
optimized kernels from the benchmark suites or HPC experts, as
explained previously. Performance is reported as elements updated
per second, which we define simply as the output size divided by
the execution time. This metric is often used for stencil computations
and is sometimes called LUPs - Lattice Updates per second [187].

Figure 4.7 shows the performance for the six benchmarks for
which we have handwritten reference implementations. As can be
seen, in most cases, the Lift generated kernels are comparable to
their handwritten counterparts. This performance shows that our
domain-agnostic extensions to the Lift IR for expressing stencil
computations can be used to generate code that performs as well as
code developed by human domain experts.

The benchmarks srad1 and srad2 seem to under-perform com-
pared to the other benchmarks on the AMD and NVIDIA platforms.
This performance is low because the input sizes are too small to sat-
urate the large server-class AMD and NVIDIA GPUs. On the smaller
ARM GPU, these benchmarks perform as good as the others.

The Hotspot2D benchmark is also a clear outlier on the AMD and
ARM platforms. On the ARM GPU, the Lift generated version is
2× faster than the handwritten version. On the AMD platform, the
performance of the handwritten version is clearly under-performing,
especially compared to the performance of the other benchmarks.
The Lift generated kernel achieves similar performance compared to
the other benchmarks while being 15× faster than the handwritten
version, which originally targets NVIDIA GPUs. These differences in
performance clearly demonstrate the need for flexible and hardware-
agnostic code-generation techniques that still can compile code
specifically tuned for a particular device.

4.5.4 Comparing against Polyhedral Compilation

This section compares our approach towards expressing stencil com-
putations in Lift with the state-of-the-art PPCG polyhedral GPU
compiler [179]. Similar to Lift, PPCG is an approach for generating
optimized data-parallel programs starting from a single unopti-
mized program.

Figure 4.8 shows the relative performance of Lift-generated ker-
nels over PPCG-generated kernels. As explained in Section 4.5.2,
both Lift and PPCG use the same auto-tuning mechanism for a fair
comparison. As can be seen, in most cases, the Lift generated code
is on-par or significantly outperforms PPCG.
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Figure 4.7: Performance of the Lift generated code and hand-optimized kernels
reported as Giga-elements updated per second.
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Figure 4.8: Performance of Lift-generated kernels compared to PPCG-generated
kernels. Both approaches auto-tune the kernels for up to three hours per bench-
mark/input/device. Large input sizes did not fit onto the ARM GPU.
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On NVIDIA, many benchmarks achieve a speedup of up to 4× over
PPCG, such as the Heat benchmark using large input sizes, where
Lift is 4.3× faster. In this case, the best Lift kernel performs no
tiling, and each thread computes only two output elements. On the
contrary, the PPCG version looks very different and uses tiling, with
each thread processing 512× more elements sequentially than Lift’s
best version. For the Gradient benchmark using the smaller input
size, the PPCG performance is almost as good as the performance
achieved by our approach. In this case, both versions are similar, use
tiling and the difference between the amount of sequential work is
only 4×.

On AMD, the results are more uniform, except for the Poisson

benchmark using the large input size. Here again, the best Lift

kernel does not use tiling, while the PPCG compiler generates a
tiled version of the benchmarks. On the ARM GPU, Lift and PPCG
are much closer than on the other platforms. Here, most of the
performance improvements come again from not using tiling.

Interestingly, none of the Lift kernels generated for the ARM
or AMD GPU use tiling, however, on NVIDIA 33% of the best Lift

versions use the tiling optimization. This confirms that different
optimization strategies are required for varying program/input
sizes as well as for different hardware.

4.6 conclusion

This chapter showed how stencils and their optimizations are ex-
pressible in the domain-agnostic intermediate representation Lift.
We extended the Lift IR with two new primitives: One for gath-
ering neighboring elements (slide) and one for defining boundary
conditions (pad). With these extensions, Lift can express and gener-
ate code for even complex multi-dimensional stencil computations
(like acoustics simulations) without requiring domain-specific IR
constructs.

This chapter also discussed how stencil-specific optimizations are
encoded as rewrite rules. This approach requires only a few new
rules explaining how the newly introduced primitives interact with
one another. Due to the modular design of Lift, we can leverage
existing optimizations, which are also directly applicable to stencil
computations. We have shown that Lift is easily extensible to new
domains with little effort required and without the need to introduce
domain-specific constructs.

Finally, experimental results provide evidence that this approach
generates high-performance stencil code on GPUs. On three plat-
forms, we see that performance is on par with hand-optimized
reference implementations. We also show that Lift outperforms the
PPCG polyhedral compiler in many cases.
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The extensions we described in this chapter, and the achieved
performance ultimately show that the domain-agnostic Lift IR is a
viable solution to the IR challenge introduced in Section 1.2.1. In the
next chapter, we discuss our approach towards providing a solution
for the Optimization Challenge defined in Section 1.2.2, which al-
lows us to reuse and compose rewrite rules encoding optimizations
just like we composed computational primitives in this chapter.





5A L A N G UA G E F O R D E F I N I N G
O P T I M I Z AT I O N S T R AT E G I E S

This chapter is largely based
on the publication "Achieving
High-Performance the
Functional Way" [68] by
Hagedorn, Lenfers, Koehler,
Qin, Gorlatch, and Steuwer
published at ICFP’20.

The Optimization Challenge:

How can we encode and apply
domain-specific optimizations
for high-performance code
generation while providing
precise control and the ability
to define custom
optimizations, thus achieving
a reusable optimization
approach across application
domains and hardware
architectures? (Section 1.2.2)

In this chapter, we address the Optimization Challenge introduced
in Section 1.2.2. Optimizing programs to run efficiently on modern
parallel hardware is hard but crucial for many applications. The pre-
dominantly used imperative languages - like C, CUDA, or OpenCL-
force the programmer to intertwine the code describing functionality
and optimizations. This approach results in a portability nightmare
that is particularly problematic, given the accelerating trend towards
specialized hardware devices to further increase efficiency.

Many emerging DSLs used in performance demanding domains,
such as deep learning or high-performance image processing, at-
tempt to simplify or even fully automate the optimization process.
Using a high-level - often functional - language, programmers focus
on describing the functionality in a declarative way. In schedule-
based compilers, including Fireiron (Chapter 3), Halide [140], or
TVM [29], a separate schedule specifies how the program should be
optimized. Unfortunately, these schedules are not written in well-
defined programming languages. Instead, they are implemented as
ad-hoc predefined APIs that the compiler writers have exposed.

In this chapter, we present ELEVATE, a functional language for de-
scribing optimization strategies. ELEVATE is inspired by prior systems
that express optimizations as compositions of rewrites in the do-
main of term rewriting systems. With ELEVATE, we show that these
well-known techniques, which are largely neglected in state-of-the-
art domain-specific compilers, can be successfully used to achieve
high-performance domain-specific compilation. Compared to com-
pilers with scheduling APIs, with ELEVATE, programmers are not
restricted to a set of predefined, built-in optimizations. Instead, they
can define their own strategies freely in a composable way. We
show how optimization strategies expressed using ELEVATE enable
high-performance code generation for RISE programs (RISE is the
spiritual successor to Lift), and achieve competitive performance
with Halide and TVM. Furthermore, we show that ELEVATE is flex-
ible and not specialized for one specific target language by also
providing a brief case study in which we use ELEVATE to optimize
automatically differentiated F̃ [160] programs.

This chapter is primarily based on [67] and [68], and the results
for comparing against Halide, discussed in Section 5.6.4, have been
contributed by Thomas Koehler.

87
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5.1 introduction

The tremendous gains in performance and efficiency that computer
hardware continues to make are a vital driving force for innovation
in computing. This gain enables entire new areas of computing, such
as deep learning, to deliver applications unthinkable even just a few
years ago. Moore’s law and Dennard scaling describe the exponential
growth of transistor counts leading to improved performance, and
the exponential growth in performance per watt leading to improved
energy efficiency. Unfortunately, these laws are coming to an end, as
observed in the 2017 ACM Turing Lecture by Hennessy and Patterson
[76]. As a result, the performance and energy efficiency gains no
longer come for free for software developers. Programs have to be
optimized for an increasingly diverse set of hardware devices by
exploiting many subtle details of the computer architecture, as, for
example, discussed in Chapter 3. Therefore, performance portability
has emerged as a crucial concern as software naturally outlives
the faster cycle of hardware generations. The accelerating trend
towards specialized hardware emphasizes this and has proven to
offer extreme benefits for performance - if the specially optimized
software exploits it.

The predominant imperative and low-level programming ap-
proaches such as C, CUDA, or OpenCL force programmers to inter-
twine the code describing the program’s functional behavior with
optimization decisions. This way of developing programs is – by
design – non performance portable. As an alternative, higher-level
domain-specific approaches have emerged that allow programmers
to declaratively describe the functional behavior without committing
to a specific implementation. Popular examples of this approach
are virtually all machine learning systems such as TensorFlow [2, 3]
or PyTorch [125]. For these approaches, the compilers and runtime
systems are responsible for optimizing the computations expressed
as data-flow graphs. Programmers have limited control over the
optimization process. Instead, large teams of engineers at Google
and Facebook provide fast implementations for the most common
hardware platforms, for TensorFlow including Google’s specialized
TPU hardware. This labor-intensive support of new hardware de-
vices is currently only sustainable for the biggest companies in the
market – and even they struggle as highlighted by Barham and Isard
[11], two of the original authors of TensorFlow.

TVM [29] and Halide [140, 141] are two high-performance, and
domain-specific compilers used in machine learning and image pro-
cessing. Both attempt to tackle the performance portability challenge
by separating the program into two parts: schedules and algorithms.
A schedule describes the optimizations to apply to an algorithm that
defines the functional behavior of the computation. Schedules are
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implemented using a set of predefined ad-hoc APIs that expose
a fixed set of optimization options. TVM’s and Halide’s authors
describe these APIs as a scheduling language, but they lack many
desirable properties of a programming language. Most crucially,
programmers are not able to define their own abstractions. Even the
composition of existing optimization primitives is, in some cases,
unintuitive due to the lack of precise semantics, and both compilers
have default and implicit behavior limiting experts’ control. All
of these reasons make writing schedules significantly harder than
writing algorithms. Furthermore, for some desirable optimizations,
it is not sufficient to change the schedule, but the algorithm itself
has to be redefined, which violates the promise of separation be-
tween algorithm and schedule. To overcome the innovation obstacle
of manually optimizing for specialized hardware, we will need to
rethink how we separate, describe, and apply optimizations in a
more principled way.

towards rewrite-based optimization strategies En-
coding program transformations as rewrite rules has been a long-
established idea that emerged from the functional programming
community. Bird and Moor [14] studied an algebraic programming
approach where functional programs are rewritten by exploiting
algebraic properties. The Glasgow Haskell Compiler allows the spec-
ification of rewrite rules for program optimizations [127]. More re-
cently, Lift [162] encodes optimization and implementation choices
as rewrite rules for optimizing a high-level pattern-based data-
parallel functional language using an automated stochastic search
method applying the rewrites. Rewrite based approaches, such as
Lift, have the advantage of being easily extensible towards new
application domains (such as stencils [70] as discussed in Chapter 4)
and supporting new hardware features. For example, specialized
vector instructions can be encoded as low-level patterns and are
introduced by defining a new rewrite rule [166]. Unfortunately,
these rewrite approaches are so far limited in their practicality to
deliver the high level of performance required in many applications
and achieved by current imperative approaches. They especially
lack control over the rewriting process, and automated rewriting
using stochastic search processes takes a long time to find a high-
performance implementation. We aim to address these practical lim-
itations of rewrite-based approaches by defining a strategy language
that allows the definition of optimization strategies to precisely con-
trol the rewrite process achieving high-performance compilation.

In this chapter, we introduce ELEVATE, a functional language for
describing optimization strategies as composable rewrite rules. ELE-
VATE is heavily inspired by research on strategy languages for term
rewrite systems used in other contexts – and largely unknown to
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Figure 5.1: Overview of our compilation approach. We use use ELEVATE to opti-
mize RISE programs: Computations are expressed as High-Level Programs written
in the data-parallel language RISE. These programs are rewritten following the
instructions of an Optimization Strategy expressed in the strategy language ELE-
VATE. From the rewritten Low-Level Programs that encode optimizations explicitly,
High-Performance Code is generated.

the high-performance compilation community – such as Stratego
by Visser [181]. ELEVATE is a flexible language based on functional
programming techniques. It allows programmers to define their own
abstractions for building optimization strategies while providing pre-
cise control about where and how optimizations are applied in the
target program. As the primary target language in this chapter, we
use RISE [8]. RISE provides well known functional data-parallel pat-
terns for expressing computations at a high-level and is inspired by
languages such as Lift [162, 167], Accelerate [23], and Futhark [77].
We provide a brief introduction to RISE in Section 5.3.1.

While the individual components of our approach are not neces-
sarily novel, our overall design demonstrates a novel application of
functional-programming techniques for achieving high-performance
compilation. As we will see in our experimental results, our ap-
proach provides competitive performance compared to the impera-
tive state-of-the-art while being built with and leveraging functional
principles resulting in an elegant and composable design.

Figure 5.1 shows an overview of the compilation flow from a high-
level program and an optimization strategy to high-performance
code. In this case, the high-level target language is RISE that will
be compiled to high-performance OpenMP code. In Section 5.2,
we first motivate the need for a more principled way to separate,
describe, and apply optimizations. RISE and its compilation to high-
performance code are explained in Section 5.3 before focussing
on ELEVATE (Section 5.4) and how high-performance optimization
strategies are expressed in it (Section 5.6). To demonstrate that
ELEVATE is applicable to more than just RISE programs, Section 5.7
presents a brief case study in which we use ELEVATE to optimize
automatically differentiated F̃ programs.
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5.2 motivation and background

We motivate the need to define and apply optimizations in a more
principled way by again taking a closer look at TVM, the current
state-of-the-art in high-performance domain-specific compilation for
machine learning. Specifically, we revisit the TVM matrix multiplica-
tion example that was already briefly discussed in Section 3.2 and
extend the discussion by analyzing a high-performance TVM sched-
ule. We then argue for achieving high-performance compilation by
using well-known functional programming techniques instead. This
approach allows us to express optimization strategies as programs
in a functional programming language instead of using the fixed
scheduling APIs.

5.2.1 Scheduling Languages for High-Performance Code Generation

Halide by Ragan-Kelley et al. [140] has introduced the concept
of decoupling a program into two parts into the domain of high-
performance code generation: the algorithm, describing the functional
behavior, and the schedule, specifying how the underlying compiler
should optimize the program. It has been initially designed to gen-
erate high-performance code for image processing pipelines [141]. It
has since inspired similar approaches in other contexts such as TVM
by Chen et al. [29] in deep learning.

Figure 5.2 shows two snippets of TVM code for generating matrix-
matrix multiplication implementations. TVM is a DSL embedded
in Python, so the syntax used here is Python. Listing 5.1 shows a
simple version. The lines 2–5 in Listing 5.1 define the matrix-matrix
multiplication computation: A and B are multiplied by performing
the dot product for each coordinate pair (x,y). The dot product is ex-
pressed as pairwise multiplications and reducing over the reduction
domain k using the tvm.sum operator (line 5). Line 7 in the listing
instructs the compiler to use the default schedule, which generates
code to compute the output sequentially in a row-major order.

Listing 5.2 in Figure 5.2 shows an optimized version of the same
computation. The schedule in lines 10–23 specifies multiple program
transformations, including tiling (line 12), vectorization (line 19),
and loop unrolling (line 18) for optimizing the performance on
multi-core CPUs. However, by carefully analyzing the optimized
algorithm and schedule, we identify the following problems with
the current schedule-based approach for achieving optimization in
high-performance domain-specific compilation. These limitations
(that all schedule-based compilers share) motivate five specific goals
that we aim to achieve with the design of ELEVATE.
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1 # Naive algorithm

2 k = tvm.reduce_axis((0, K), 'k')

3 A = tvm.placeholder((M, K), name='A')

4 B = tvm.placeholder((K, N), name='B')

5 C = tvm.compute((M, N),lambda x,y: tvm.sum(A[x,k]*B[k,y], axis=k),name='C')

6 # Default schedule

7 s = tvm.create_schedule(C.op)

Listing (5.1) Matrix matrix multiplication in TVM. Lines 2–5 define the computation A×B,
line 7 instructs the compiler to use the default schedule computing the output matrix
sequentially in a row-major order.

1 # Optimized algorithm

2 bn = 32

3 k = tvm.reduce_axis((0, K), 'k')

4 A = tvm.placeholder((M, K), name='A')

5 B = tvm.placeholder((K, N), name='B')

6 pB = tvm.compute((N / bn, K, bn), lambda x,y,z: B[y, x*bn+z], name='pB')

7 C = tvm.compute((M,N), lambda x,y:tvm.sum(A[x,k] * pB[y//bn,k,

8 tvm.indexmod(y,bn)], axis=k),name='C')

9 # Parallel schedule

10 s = tvm.create_schedule(C.op)

11 CC = s.cache_write(C, 'global')

12 xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)

13 s[CC].compute_at(s[C], yo)

14 xc, yc = s[CC].op.axis

15 k, = s[CC].op.reduce_axis

16 ko, ki = s[CC].split(k, factor=4)

17 s[CC].reorder(ko, xc, ki, yc)

18 s[CC].unroll(ki)

19 s[CC].vectorize(yc)

20 s[C].parallel(xo)

21 x, y, z = s[pB].op.axis

22 s[pB].vectorize(z)

23 s[pB].parallel(x)

Listing (5.2) Optimized Matrix matrix multiplication in TVM. Lines 2–8 define an optimized
version of the algorithm in Listing 5.1, the other lines define a schedule specifying the
optimizations for targeting CPUs.

Figure 5.2: Two different versions of specifying and optimizing matrix matrix
multiplication in TVM.
From: https://docs.tvm.ai/tutorials/optimize/opt_gemm.html

https://docs.tvm.ai/tutorials/optimize/opt_gemm.html
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blurred separation of concerns In order to optimize the
memory access pattern, the algorithm has to be changed. In this
example, a copy of the B matrix (pB) is introduced in line 6 (and
used in line 8), whose elements are reordered depending on the tile
size. This optimization is not expressible with scheduling primitives
and, therefore, requires the modification of the algorithm – clearly
violating the promise of separating algorithm and schedule.

limited reuse of schedules Even for optimizations that
do not require to change the algorithm, the separation between
algorithm and schedule is blurred because both share the same
Python identifiers and must, therefore, live in the same scope. This
restriction limits the reuse of schedules across algorithms.

schedule languages are hard to extend The parallel
schedule uses eight built-in optimization primitives (cache_write,
tile, compute_at, split, reorder, unroll, vectorize, parallel).
Scheduling primitives provide high-level abstractions for common
program transformations aiming to optimize performance. Some
are specific for the targeted hardware (like vectorize), some are gen-
erally useful algorithmic optimizations for many applications (like
tiling to increase data locality), and others are low-level optimiza-
tions (like unroll and reorder that transform loop nests). However,
TVM’s scheduling language is not easily extensible. Adding a new
optimization primitive to the existing schedule API requires ex-
tending the underlying TVM compiler. The same is true for other
schedule-based compilers, including Halide or Fireiron. Even a
primitive like tile, which can be implemented as a specific com-
position of split and reorder [73], is instead provided as a built-in
abstraction. Modern scheduling languages are not extensible with
user-defined abstractions without extending the whole compiler.

reasoning about schedules is difficult The behavior
of some of the existing primitives is not intuitive, and the docu-
mentation provides only informal descriptions. For example, the
documentation for cache_write is “Create a cache write of original ten-
sor, before storing into tensor”. Reasoning about schedules is difficult
due to the lack of clear descriptions of the provided optimization
primitives.

implicit default behavior If no schedule is provided (as
in Listing 5.1), the TVM compiler employs a set of implicit default
optimizations out of reach for the user’s control. This sometimes
leads to the surprising behavior that algorithms without a schedule
perform better (e.g., due to auto-vectorization) than ones where a
schedule is provided.
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1 // Matrix Matrix Multiplication in RISE

2 val dot = fun(as, fun(bs,

3 zip(as)(bs) |> map(fun(ab, mult(fst(ab))(snd(ab)))) |> reduce(add)(0) ) )

4 val mm = fun(a : M.K.float, fun(b : K.N.float,

5 a |> map(fun(arow, // iterating over M

6 transpose(b) |> map(fun(bcol, // iterating over N

7 dot(arow)(bcol) )))) ) ) // iterating over K

1 // Optimization Strategy in ELEVATE

2 val tiledMM = (tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;‘ lowerToC)(mm)

Figure 5.3: Matrix matrix multiplication in RISE (top) and the tiling optimization
strategy in ELEVATE (bottom).

5.2.2 A Principled Way to Separate, Describe, and Apply Optimizations

Out of the shortcomings of the scheduling API approach, we iden-
tify the following desirable features for a more principled way to
separate, describe, and apply optimizations for high-performance
code generation. Our approach aims to:

1. Separate concerns: Computations should be expressed at a high
abstraction level only. They should not be changed to express
optimizations;

2. Facilitate reuse: Optimization strategies should be defined
clearly separated from the computational program facilitating
reusability of computational programs and strategies;

3. Enable composability: Computations and strategies should be
written as compositions of user-defined building blocks (pos-
sibly domain-specific ones); both languages should facilitate the
creation of higher-level abstractions;

4. Allow reasoning: Computational patterns and especially strate-
gies, should have a precise, well-defined semantics that allow
reasoning about them;

5. Be explicit: Implicit default behavior should be avoided to
empower users to be in control.

Fundamentally, we argue that a more principled high-performance com-
pilation approach should consider computations and optimization-strategies
equally important. Consequently, a strategy language should be built with
the same standards as a language describing computation.

In this paper, we present such an approach by introducing the
strategy language ELEVATE. Combining ELEVATE with a computational
language like RISE or F̃ achieves precisely the desired goals, as we
show in the following.
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a motivational example Figure 5.3 shows an example of a
RISE program defining a matrix multiplication computation as a
composition of well-known data-parallel functional patterns. Be-
low is an ELEVATE strategy that defines one possible optimization by
applying the well-known tiling optimization that improves mem-
ory usage by increasing spatial and temporal locality of the data.
The optimization strategy is a sequential composition (`;`) of user-
defined strategies that are themselves defined as compositions of
simple rewrite rules giving the strategy a precise semantics. We do
not employ implicit behavior and instead generate low-level code
according to the optimization strategy specified.

In the remainder of the chapter, we describe how to define opti-
mizations typically provided in high-performance scheduling lan-
guages as optimization strategies in ELEVATE defined as compositions
of simple rewrite rules for data-parallel functional programs. We
start by briefly introducing the computational language RISE and its
compilation to parallel imperative code because we will use it as the
primary target language in this chapter.

5.3 R ISE : a language for data parallel computations

In this section, we briefly introduce the RISE [8] programming lan-
guage (Section 5.3.1). We use RISE in the remainder of this chapter to
demonstrate how programs are optimized with ELEVATE. We explain
how low-level patterns represent hardware features (Section 5.3.2),
and finally describe how imperative code is generated (Section 5.3.3).

5.3.1 A Brief Introduction to RISE

RISE is a functional programming language that uses data-parallel
patterns to express computations over multi-dimensional arrays.
RISE is a spiritual successor of Lift, which was initially introduced
by Steuwer et al. [162]. Lift has demonstrated that functional, high-
performance code generation is feasible for different domains, in-
cluding dense linear algebra, sparse linear algebra, and stencil com-
putations (see [167] and Chapter 4). RISE is implemented as an
embedded DSL in Scala and generates parallel OpenMP code for
CPUs and OpenCL for GPUs.

Figure 5.4 shows the abstract syntax of RISE expressions and
types as well as the provided high-level and low-level primitives
for expressing data-parallel computations. RISE provides the usual
λ-calculus constructs of abstraction (written fun(x, e)), application
(written with parenthesis), identifiers, and literals (underlined). The
type system separates data types from function types to prevent
functions from being stored in memory. RISE uses a restricted form of
dependent function types for types that contain expressions of kind
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RISE Syntax of Expressions and Types:

e ::= fun(x, e) | e(e) | x (Abstraction, Application, Identifier)

| l | P (Literal, Primitives)

κ ::= nat | data (Natural Number Kind, Datatype Kind)

τ ::= δ | τ→ τ (Data Type, Function Type)

| (x : κ)→ τ (Dependent Function Type)

n ::= 0 | n+n | n ·n | . . . (Nat. Number Literals, Binary Operations)

δ ::= n.δ | δ× δ | idx[n] (Array Type, Pair Type, Index Type)

| float | n<float> (Scalar Type, Vector Type)

High-Level Primitives:

id : (δ : data)→ δ→ δ

add | mult | . . . : (δ : data)→ δ→ δ→ δ

fst : (δ1 δ2 : data)→ δ1 × δ2 → δ1
snd : (δ1 δ2 : data)→ δ1 × δ2 → δ2
map : (n : nat)→ (δ1 δ2 : data)→

(δ1 → δ2)→ n.δ1 → n.δ2
reduce : (n : nat)→ (δ : data)→

(δ→ δ→ δ)→ δ→ n.δ→ δ

zip : (n : nat)→ (δ1 δ2 : data)→
n.δ1 → n.δ2 → n.(δ1 × δ2)

split : (n m : nat)→ (δ : data)→ nm.δ→ n.m.δ
join : (n m : nat)→ (δ : data)→ n.m.δ→ nm.δ

transpose : (n m : nat)→ (δ : data)→ n.m.δ→ m.n.δ
generate : (n : nat)→ (δ : data)→ (idx[n]→ δ)→ n.δ

Low-Level Primitives:

map{Seq|SeqUnroll|Par} : (n : nat)→ (δ1 δ2 : data)→
(δ1 → δ2)→ n.δ1 → n.δ2

reduce{Seq|SeqUnroll} : (n : nat)→ (δ1 δ2 : data)→
(δ1 → δ2 → δ1)→ δ1 → n.δ2 → δ1

toMem : (δ1 δ2 : data)→ δ1 → (δ1 → δ2)→ δ2
mapVec : (n : nat)→ (δ1 δ2 : data)→

(δ1 → δ2)→ n<δ1>→ n<δ2>
asVector : (n m : nat)→ (δ : data)→

nm.δ→ n.m<δ>
asScalar : (n m : nat)→ (δ : data)→

n.m<δ>→ nm.δ

Figure 5.4: The syntax of expressions and types of RISE as well as high- and
low-level primitives.
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nat representing natural numbers or data for type-level variables
ranging over data types. Natural numbers are used to represent the
length of arrays in the type and might consist of arithmetic formulae
with binary operations such as addition and multiplication. Data
types are array types, pair types, index types representing array
indices up to n, scalar types, or vector types that correspond directly
to the SIMD vector types of the underlying hardware. Precise typing
rules for such a type system are given by Atkey et al. [8].

In this chapter, we use the following syntactic sugar: we write
reverse function application in the style of F-sharp as e |> f (equiv-
alent to f(e)); function composition is written as g << f and in the
reverse form as f >> g, both meaning f is applied before g; we
may write + and * as inline binary operators instead of calling the
equivalent functions add and mult.

RISE defines a set of high-level primitives that are used to describe
computations over multi-dimensional arrays. These primitives are
well-known in the functional programming community: id, fst, snd,
and the binary functions add and mult have their obvious meaning.
map and reduce are the well-known functions operating on arrays
and allowing for easy parallelization. zip, split, join, and transpose

shape multi-dimensional array data in various ways. RISE also pro-
vides pad and slide (see Chapter 4), which we omit here for brevity
because we are not targeting stencil computations in this chapter.
Finally, generate creates an array based on a generating function.
Since RISE does not support general recursion, every RISE program
terminates.

5.3.2 A Functional Representation of Hardware Features

More interesting are the low-level primitives that RISE offers to
indicate how to exploit the underlying hardware. The different
variations of the map pattern indicate if the given function is applied
to the array using a sequential loop, by unrolling this loop, or using
a parallel loop where each iteration might be performed in parallel.

Similarly, the reduce variations indicate if the reduction loop
should be unrolled or not. A parallel reduction is not provided
as a given building block, but must be expressed using the other
low-level primitives such as the mapPar.

The expression toMem(a)(fun(x, b)) indicates that the value a will
be stored in memory and that the stored value can be accessed in the
expression b with the name x. The remaining three low-level patterns
mapVec, asVector, and asScalar enable the use of SIMD-style vector-
ization. The low-level primitives presented here are OpenMP-specific
and aimed at parallelization for CPUs, a similar set of low-level prim-
itives exists for targeting the OpenCL programming language for
GPUs.
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5.3.3 Strategy Preserving Code Generation from RISE

The compilation of RISE programs is slightly unusual. A high-level
program is rewritten using a set of rewrite-rules into the low-level
patterns. This process was initially proposed by Steuwer et al. [162]
in Lift. From the low-level representation, imperative parallel code
is generated. All optimization decisions, such as how to parallelize
the reduce primitive, must be made in the rewriting stage before
the code generation. The code generation process is deterministic
and only translates the annotated implementation strategy into the
target imperative language such as OpenMP or OpenCL. Atkey
et al. [8] describe a compilation process that is guaranteed to be
strategy preserving; that is, no implicit implementation decisions are
performed by the compiler. Instead, it respects the implementation,
and optimization decisions are explicitly encoded in the low-level
RISE program, which compiles straight into high-performance code.

Lift promises the rewriting process to be fully automatic using a
stochastical search method. However, there are many cases where
this is either impractical: Either because the rewriting process takes
too long, or because expert programmers want precise control over
the optimizations applied to a particular program targeting a particu-
lar hardware device. Therefore, we introduce a language that allows
a programmer to specify optimization strategies as compositions of
rewrite rules.

5.4 elevate : a language for optimization strategies

In this section, we introduce ELEVATE, a functional language for
describing optimization strategies. ELEVATE is heavily inspired by
earlier works on strategy languages for term rewriting systems,
e.g., Stratego [184]. Kirchner [87] provides a recent overview of the
rewriting community’s research. We define the notion of a Strategy
and make use of previously proposed combinators and traversal
operators while extending this set slightly. Our key contribution is
not the design of ELEVATE itself but rather its application to formally
define optimizations required in high-performance compilation.

5.4.1 Language Features and Types

ELEVATE is a functional language with a standard feature set, includ-
ing function recursion, algebraic data types, and pattern matching.
Besides the standard scalar data types such as int, types of interests
are function types and pair types. Our current implementation is an
embedded DSL in Scala, and we use Scala-like notation for ELEVATE
strategies in the chapter.
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5.4.2 Strategies

A strategy is the fundamental building block of ELEVATE. Strategies
encode program transformations and are modeled as functions with
the following type:

type Strategy[P] = P => RewriteResult[P]

Here, P is the type of the rewritten program. P could, for example, be
Rise for RISE programs, or FSmooth for F̃ programs. A RewriteResult

is an applicative error monad encoding the success or failure of
applying a strategy to a program:

RewriteResult[P] = Success[P](p: P)

| Failure[P](s: Strategy[P])

In case of a successful application, Success contains the transformed
program, in case of a failure, Failure contains the unsuccessful
strategy. Carrying the failing strategy along in the Failure case is
beneficial in cases where a stateful strategy is used.

The simplest example of a strategy is the id strategy. It always
succeeds and returns its input program p unchanged:

def id[P]: Strategy[P] = (p: P) => Success(p)

The fail strategy does the opposite and always fails while recording
that it was the failing strategy:

def fail[P]: Strategy[P] = (p: P) => Failure(fail)

5.4.3 Rewrite Rules as Strategies

In ELEVATE, we do not differentiate between rewrite rules and strate-
gies; hence, rewrite rules are also strategies, i.e., functions satisfying
the same type given above. Let us suppose we want to apply some
well-known rewrite rules such as the fusion of two map calls:

map(f) << map(g)  map(f << g)

In RISE, the left-hand side of the rule is expressed as:

val p: Rise = fun(xs, map(f)(map(g)(xs)))

The RISE AST representation of the fun-body is shown in Figure 5.5
on the left. Here, function applications appear explicit as app nodes.
The fusion rule that rewrites this AST representation is implemented
in ELEVATE as follows:

def mapFusion: Strategy[Rise] = p => p match {

case app(app(map, f), app(app(map, g), xs)) =>

Success( map(fun(x, f(g(x))))(xs) )

case _ => Failure(mapFusion) }

Note that we are mixing RISE (i.e., map(f)) and ELEVATE expressions.
We write app(f, x) to pattern match the function application that is
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Figure 5.5: RISE’s map-fusion rule as an AST transformation.

written as f(x) in RISE. The expression nested inside Success is the
rewritten expression shown in Figure 5.5 on the right.

Figure 5.6 shows the RISE rewrite rules that are used as basic
building blocks in this chapter. Each of these rules is implemented as
an ELEVATE strategy similar to the map-fusion example. We use these
rules as building blocks for expressing more complex optimizations
such as tiling as compositions in ELEVATE.

5.4.4 Strategy Combinators

An idea that ELEVATE inherits from Stratego [182] is to describe
strategies as compositions – one of the key aims that we set out for
our approach. Therefore, we introduce strategy combinators.

The seq combinator is given two strategies fs and ss and applies
the first strategy to the input program p. Afterward, the second
strategy is applied to the result.

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =

fs => ss => p => fs(p) »= (q => ss(q))

The seq strategy is only successful when both strategies are success-
fully applied in succession; otherwise, seq fails. In the implemen-
tation of our combinators, we make use of the monadic interface
of RewriteResult and use the standard Haskell infix operators »=

for monadic bind, <|> for mplus, and <$> for fmap. This way, the
definition of the seq combinator is read as follows:

1. Apply the first strategy (fs(p)), which yields a RewriteResult.

2. In case the RewriteResult is a Success(x), bind the rewritten
program x to the name q and apply the second strategy (»=
(q =>ss(q))). Otherwise, return Failure.
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ε id (addId)

(id : m.n.δ→ m.n.δ) transpose >> transpose

(idToTranspose)

transpose >> map(map(f)) map(map(f)) >> transpose

(transposeMove)

map(f) split(n) >> map(map(f)) >> join

(splitJoin)

map(f >> g)  map(f) >> map(g)

(mapFission/mapFusion)

map(f) >>reduce(fun((acc,y), op(acc)(y)))(init)   
reduce(fun((acc,y), op(acc)(f(y))))(init)

(fuseReduceMap/fissionReduceMap)

Figure 5.6: All RISE-specific rewrite rules for high-level expressions that are used
for composing more complex optimizations in this chapter.

The lChoice combinator is given two strategies and applies the
second one only if the first failed.

def lChoice[P]:Strategy[P] => Strategy[P] => Strategy[P] =

fs => ss => p => fs(p) <|> ss(p)

We make heavy use of both combinators in the following and there-
fore use <+ as short-form notation for lChoice and ‘;‘ for seq. Addi-
tionally, we define two more combinators inhereted from Stratego:
The try combinator applies a strategy and, in case of a failure,
applies the identity strategy. Therefore, try never fails.

def try[P]: Strategy[P] => Strategy[P] =

s => p => (s <+ id)(p)

Finally, the repeat combinator applies the given strategy until it is
no longer applicable.

def repeat[P]: Strategy[P] => Strategy[P] =

s => p => try(s ‘;‘ repeat(s) )(p)

5.4.5 Traversals as Strategy Transformers

The mapFusion strategy we saw in the previous subsection is im-
plemented as a function in ELEVATE. Therefore, its match statement
will try to pattern match its argument – the entire program. This
means that a strategy on its own is hard to reuse in different cir-
cumstances because it will always be applied at the root of the AST
representation.
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Figure 5.7: Two possible locations for applying the map-fusion rule within the same
RISE program.

In addition, a strategy is often applicable at multiple places within
the same program or only applicable at a specific location. For
example, the mapFusion strategy is applicable twice in the following
RISE program:

val threemaps = fun(xs, map(f)(map(g)(map(h)(xs))))

We may fuse the first or last two maps, as shown in Figure 5.7.
In ELEVATE, we use traversals to describe at which exact location

a strategy is applied. Luttik and Visser [98] proposed three basic
traversals encoded as strategy transformers:

type Traversal[P] = Strategy[P] => Strategy[P]

def all[P]: Traversal[P]

def one[P]: Traversal[P]

def some[P]: Traversal[P]

all applies a given strategy to all sub-expressions of the current
expression and fails if it does not apply to all sub-expressions. one
applies a given strategy to exactly one sub-expression and fails if
the strategy is not applicable to any sub-expression. some applies a
given strategy to at least one sub-expression but potentially more if
possible. one and some are allowed to choose sub-expressions non-
deterministically.

In ELEVATE, we see these three basic traversals as a type class:
an interface that has to be implemented for each program type P.
The implementation for RISE is straightforward. RISE programs are
represented by ASTs such as the one in Figure 5.7. Therefore, all,
one, and some correspond to the obvious implementations on the
tree-based representation.
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describing locations using traversals By default, every
strategy is applied at the root of the AST. To apply a strategy further
down in the AST, we can wrap it inside one of the basic traversal
strategies. For example, to fuse the first two maps in Figure 5.7, we
may use the one traversal:

one(mapFusion)(threemaps)

Using one will apply the mapFusion strategy not at the root of the
AST, but instead one level down, first trying to apply the strategy
(unsuccessfully) to the function parameter; then (successfully) to the
function body, as highlighted in the upper-right blue box.

To fuse the last two maps, we use the one traversal twice to apply
mapFusion two levels down in the AST:

one(one(mapFusion))(threemaps)

This successfully applies the fusion strategy to the expression high-
lighted in the lower-right purple box shown in Figure 5.7.

5.4.6 RISE-Specific Traversal Strategies

The traversals we have discussed so far are generic, meaning they
can be applied to any target language. Therefore, these traversals are
flexible but offer only limited control For one and some, the selection
of sub-expressions is either non-deterministic or implementation-
dependent (as for RISE). Especially in the context of program op-
timization it rarely makes sense to apply a strategy to all sub-
expressions. Instead, we often want to apply an optimization at a
specific position in the AST (e.g., to tile two specific loops). Since
ASTs of real-world programs are significantly larger than the one
shown in Figure 5.7, simply nesting the all, one and some traversals
does not offer the required precision to describe such locations.

In ELEVATE, one can easily specify language-specific traversals. As
we have seen in the previous section, RISE is a functional language
using λ-calculus as its representation. Therefore, it makes sense to
introduce traversals that navigate the two core concepts of λ-calculus:
function abstraction and application.

To apply a strategy to the body of a function abstraction, we
define the following traversal:

def body: Traversal[Rise] = s => p => p match {

case fun(x,b) => (nb => fun(x,nb)) <$> s(b)

case _ => Failure(body(s)) }

def <$>[P]: (P => P) => RewriteResult[P] => RewriteResult[P] =

f => r => r match {

case Success(x) => Success(f(x))

case Failure(y) => Failure(y) }
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A strategy s is applied to the function body (s(b)), and if successful,
the transformed body is bound to the name nb around which we
construct a new function.

Similarly, we define traversals function and argument for function
applications:

def function: Traversal[Rise] = s => p => p match {

case app(f,a) => (nf => app(nf, a)) <$> s(f)

case _ => Failure(function(s)) }

def argument: Traversal[Rise] = s => p => p match {

case app(f,a) => (na => app(f, na)) <$> s(a)

case _ => Failure(argument(s)) }

For the RISE program shown in Figure 5.7, we can precisely de-
scribe a traversal path in the AST. To fuse the first two maps we
may write body(mapFusion)(threemaps), and to fuse the others, we
write body(argument(mapFusion))(threemaps). Both versions describe
the precise path from the root to the sub-expression at which the
fusion rule is applicable.

5.4.7 Complete Expression Traversal Strategies

All of the traversal primitives introduced so far apply their given
strategies only to immediate sub-expressions. Therefore, they are
sometimes called one-level traversals. Using strategy combinators
and traversals, we can define recursive strategies which traverse
entire expressions:

def topDown[P]: Traversal[P] =

s => p => (s <+ one(topDown(s)))(p)

def bottomUp[P]: Traversal[P] =

s => p => (one(bottomUp(s)) <+ s)(p)

def allTopDown[P]: Traversal[P] =

s => p => (s ‘;‘ all(allTopDown(s)))(p)

def allBottomUp[P]: Traversal[P] =

s => p => (all(allBottomUp(s)) ‘;‘ s)(p)

def tryAll[P]: Traversal[P] =

s => p => (all(tryAll(try(s))) ‘;‘ try(s))(p)

topDown and bottomUp are useful strategies traversing an expression
either from the top or bottom, trying to apply a strategy at every
sub-expression and stopping at the first successful application. If
the strategy is not applicable at any sub-expression, topDown and
bottomUp fail. allTopDown and allBottomUp do not use lChoice, insist-
ing on applying the given strategy to every sub-expression. The
tryAll strategy is often more useful as it wraps its given strategy
in a try and thus never fails but applies it wherever possible. Also,
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note that the tryAll strategy traverses the AST bottom-up instead of
top-down. Visser [182] has also proposed these traversals, and we
use them here with slightly different names more fitting for our use
case of achieving high-performance domain-specific compilation.

5.4.8 Normalization

When implementing rewrite rules, such as the mapFusion rule as
strategies, the match statement expects the input expression to be in
a particular syntactic form. For a functional language like RISE, we
might, for example, expect that expressions are fully β-reduced. To
ensure that expressions satisfy a normal-form we define:

def normalize[P]: Strategy[P] => Strategy[P] =

s => p => repeat(topDown(s))(p)

The normalize strategy repeatedly applies a given strategy at every
possible sub-expression until it can not be applied anymore. There-
fore, after normalize successfully finishes, it is impossible to apply
the given strategy to any sub-expression anymore.

beta-eta-normal-form λ-calculus (and RISE) allows for se-
mantically equivalent but syntactically different expressions. For
example, fun(x => f(x)) is equivalent to f iff x does not appear free
in f. Transforming between these representations is called η-reduction
and η-abstraction, which we also implement as ELEVATE strategies:

def etaReduction: Strategy[Rise] = p => p match {

case fun(x1, app(f, x2))

if x1 == x2 && not(contains(x1))(f) => Success(f)

case _ => Failure(etaReduction)}

def etaAbstraction: Strategy[Rise] = p => p match {

case f if hasFunctionType(f) => Success(fun(x, f(x)))

case _ => Failure(etaAbstraction) }

Note that we can use two ELEVATE strategies, not and contains, in the
pattern guard of the etaReduction strategy:

def not: Strategy[P] => Strategy[P] = s => p => s(p) match {

case Success(_) => Failure(not(s))

case Failure(_) => Success(p) }

def contains[P]: P => Strategy[P] = r => p =>

topDown(isEqualTo(r))(p)

def isEqualTo[P]: P => Strategy[P] = r => p =>

if(p == r) Success(p) else Failure(isEqualTo(r))

The RewriteResult obtained by applying not(contains(x1)) to f is
implicitly cast to a Boolean eventually. The contains strategy tra-
verses f from top to bottom and checks if it finds x1 using the
isEqualTo strategy.
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1 def DFNF = BENF ‘;‘ // (1) normalize using beta-eta-normal-form

2 // (2) ensure that the argument of a map is a function abstraction

3 normalize(argOf(map, not(isFun) ‘;‘ etaAbstraction))‘;‘

4 // ...similar normalization for reduce primitive (left out for brevity)

5 // (3) ensure every map is provided two arguments

6 // ... (and every reduce is provided three arguments)

7 normalize(

8 // (3.1) if there is a map in 2 hops (or a reduce in three hops) ...

9 one(function(isMap) <+ one(function(isReduce))) ‘;‘

10 // (3.2) ... and the current node is not an apply ...

11 not(isApp) ‘;‘

12 // (3.3) ... we need to eta-abstract

13 one((function(isMap) <+ one(function(isReduce))) ‘;‘ etaAbstraction)

Listing 5.3: Definition of the Data-Flow-Normal-Form (DFNF).

... app

map

fun

f
arg

BENF-Normalized DFNF-Normalized

Figure 5.8: Two semantically equivalent but syntactically different versions of the
RISE expression map(f). The left version is beta-eta normalized using BENF, and
the right version is in data-flow-normal-form (DFNF).

The simplest normal-form we often use in the following is the βη-
normal-form (BENF) which exhaustively applies β- and η-reduction:
def BENF = normalize(betaReduction <+ etaReduction). Since not ev-
ery function abstraction is η-reducible, the function arguments of
RISE’s higher-order primitives map and reduce might have different
syntactic forms. Varying syntactic forms complicate the develop-
ment of rewrite rules because a rule is always defined to match
one particular syntactic structure. To simplify the application of
strategies and the development of new rules, we make heavy use of
an additional normal-form, which unifies the syntactic structure of
function arguments to higher-order primitives.

data-flow-normal-form One important normal-form for
RISE programs is the Data-Flow-Normal-Form (DFNF) because it
ensures a specific syntactic structure that we can rely on during
rewriting. Listing 5.3 shows the definition of DFNF, which makes the
data flow in a RISE program explicit in two ways: First, by ensuring
a function abstraction is present in every higher-order primitive, and
second, by ensuring every higher-order primitive is fully applied.
For example, DFNF ensures that a map is always provided two argu-
ments: a function and an input array, even if it could be β-reduced.
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Figure 5.8 shows the result of applying the DFNF to the RISE expres-
sion map(f). First, the input expression is normalized using BENF

(line 1). Applying BENF generally decreases the size of the AST.
Second, we unify the syntactic form of the function arguments

of higher-order primitives map and reduce. Listing 5.3 shows this
unification for the map primitive in line 3; the definition for the
reduce primitive is similar. The argOf traversal is similar to argument

we already introduced; however, it only traverses to the argument
of the function application if the applied function matches the given
input (map in this case). Essentially, whenever the function argument
of a map primitive is not already a function abstraction (as on the left
side of Figure 5.8), we eta-abstract it. We describe the desired form
in a declarative way, using the not and isFun predicates.

Third, we ensure that higher-order primitives are fully applied.
For example, the map primitive on the left side of Figure 5.8 is not
applied to an array argument. By applying DFNF, the array argument
η1 is added by eta-abstracting again, as shown on the right hand side
of the figure. This normalization is also naturally expressed using
traversals and predicates: Whenever, we can reach a map node in two
hops (one(function(isMap))), and the current node is not already an
app-node (not(isApp)), we know that the map primitive is not applied
to an array argument, and thus, we apply eta-abstraction.

Even though the size of the AST potentially increases significantly
by applying DFNF instead of only BENF, we now have a unified syn-
tactic structure. This structure immensely simplifies the traversal
and implementation of more complex optimization strategies, as we
will see in the following section.

confluence and termination Confluence (multiple non-
deterministic rewrite paths eventually produce the same result)
and termination are desirable properties for normal-forms in term
rewriting systems. In ELEVATE, confluence only becomes a factor
when the implementations of one and some are non-deterministic.
For RISE, we are not interested in having multiple non-deterministic
rewrite paths but instead need precise control over where, when,
and in which order specific rules are applied. Therefore, we avoid
non-determinism and do not need to worry about confluence.

Termination of normal-forms, and ELEVATE programs in general,
must be evaluated on a case by case basis as it critically depends
on the chosen set of strategies. For example, it is trivial to build a
non-terminating normal-form using the id strategy that is always
applicable. We currently do not prevent creating non-terminating
strategies similarly to how almost all general-purpose languages do
not prevent writing non-terminating programs. In the future, we are
interested in introducing a more powerful type system for ELEVATE
to better assist the user in writing well-behaved strategies.
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5.5 expressing optimizations as rewrite strategies

In the domain of deep learning, high-performance optimizations
are particularly important. While Visser, Benaissa, and Tolmach
[184] showed that strategy languages can be used to build program
optimizers, the optimizations implemented as strategies were not
targeted towards high-performance code generation but rather to op-
timize a functional ML-like language. To the best of our knowledge,
this work is the first to describe a holistic functional approach for
high-performance compilation that implements optimizations for
achieving high performance as rewrite strategies and can compete
with state-of-the-art imperative solutions.

In this section, we explore how ELEVATE is used to encode high-
performance optimizations by leveraging its ability to define custom
abstractions. We use TVM [29] as a comparison for a state-of-the-art
imperative optimizing deep learning compiler with a scheduling
API implemented in Python. TVM allows programmers to express
computations using a DSL (embedded in Python) and control the
application for optimizations using a separate scheduling API. In our
case, we use RISE as the language to express computations and de-
velop separate strategies in ELEVATE, implementing the optimizations
equivalent to those available in TVM’s scheduling API.

We start by expressing basic scheduling primitives such as
parallel and vectorize in ELEVATE. We then explore the implemen-
tation of more complex scheduling primitives such as tile by com-
position in ELEVATE, whereas it is a built-in optimization in TVM.
Following our functional approach, we express sophisticated opti-
mization strategies as compositions of a small set of general rewrite
rules resulting in a more principled and even more powerful design.
Specifically, the tiling optimization strategy in ELEVATE can tile arbi-
trary many dimensions instead of only two, while being composed
of only five RISE-specific rewrite rules.

5.5.1 Basic Scheduling Primitives as ELEVATE Strategies

TVM’s basic scheduling primitives parallel, split, vectorize, and
unroll specify loop transformations targeting a single loop. These
are implemented as simple rewrite rules for RISE.

parallel The parallel scheduling primitive indicates that a par-
ticular loop shall be computed in parallel. In RISE, this is indicated
by transforming a high-level map into its low-level mapPar version.
We express this rewrite rule as a simple ELEVATE strategy:

def parallel: Strategy[Rise] = p => p match {

case map => Success( mapPar )

case _ => Failure( parallel ) }
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A rewrite rule that translates map into the sequential variant mapSeq
is defined in the same way:

def sequential: Strategy[Rise] = p => p match {

case map => Success( mapSeq )

case _ => Failure( sequential) }

split TVM’s split scheduling primitive implements loop-
blocking (also known as strip-mining). In RISE, this is achieved
by transforming the computation over an array expressed by map(f):
first the input is split into a two-dimensional array using split(n),
then f is mapped twice to apply the function to all elements of the
now nested array, and finally, the resulting array is flattened into
the original one-dimensional form using join.

def split(n: Int): Strategy[Rise] = p => p match {

case app(map, f) =>

Success( split(n) >> map(map(f)) >> join )

case app(app(reduce, op), init) =>

Success( split(n) >> reduce(

fun(a, fun(y, op(a, reduce(op)(init)(y)) )))(init) )

case _ => Failure( split(n) ) }

It is important to note that RISE does not materialize the interme-
diate two-dimensional array in memory. Instead, we only use this
representation inside the compiler for code generation. In TVM, the
split scheduling primitive can also be used to block reduction loops
for which we use the reduce primitive in RISE. To make the split

strategy applicable to both map and reduce primitives, we add a sec-
ond case to the strategy that blocks a single reduce into two nested
reductions.

Note that there is now a difference between the ELEVATE strategy
split and the RISE primitive split. This ambiguity arises because we
aim to build one-to-one strategy correspondences to TVM’s schedul-
ing primitives. The use of whether the strategy or the primitive is
used is distinguished by the syntax highlighting and also clear from
the context.

vectorize The vectorize scheduling primitive indicates that a
loop shall be computed in a SIMD-fashion. Its equivalent ELEVATE
vectorize strategy implementation is similar to the split strategy:

def vectorize(n: Int): Strategy[Rise] = p => p match {

case app(map, f) if isScalarFun(f) =>

Success(asVector(n) >> map(mapVec(f)) >> asScalar)

case _ => Failure( vectorize(n) ) }

First, it splits the input of scalars into an array of vectors using the
asVector primitive. Then, f is mapped twice and transformed to
perform vectorized computations using map(mapVec(f)) and finally,
the resulting array of vectors is transformed to an array of scalars.
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Vectorization is most efficient when applied to the innermost loop
of a loop-nest. In RISE, this corresponds to applying the vectorize

strategy to the innermost map of potentially nested maps. Applying a
strategy to the innermost map of nested maps is achieved in ELEVATE
by traversing the expression beginning from the bottom of the AST
(for example using bottomUp(vectorize)). The additional constraint
isScalarFun(f) ensures that only functions operating on scalars are
vectorized by inspecting f’s type. The restriction to scalar functions
for vectorize is a current limitation of RISE.

unroll The unroll strategy rewrites the high-level map and
reduce primitives into RISE low-level primitives that will be unrolled
by the RISE compiler during code generation.

def unroll: Strategy[Rise] = p => p match {

case map => Success( mapSeqUnroll )

case reduce => Success( reduceSeqUnroll )

case _ => Failure( unroll ) }

5.5.2 Multi-dimensional Tiling as an ELEVATE Strategy

Tiling is a crucial optimization improving the cache hit rate by ex-
ploiting locality within a small neighborhood of elements. TVM’s
tile is a more complicated scheduling primitive to implement be-
cause it is essentially a combination of two traditional loop transfor-
mations: loop-blocking and loop-interchange. In fact, tile in TVM
is a built-in combination of split for loop-blocking and reorder for
loop-interchange. We already saw how to implement split using
ELEVATE. We will now discuss how to implement a tile strategy
using a combination of rules, normal-forms, and domain-specific
traversals. We construct a generalized strategy out of a few simple
building blocks that can tile an arbitrary number of dimensions,
whereas TVM only implements 2D tiling.

Five RISE-specific rules are required for expressing our multi-
dimensional tiling strategy: idToTranspose, transposeMove, splitJoin,
addId, and mapFission (all shown in Figure 5.6). We implement these
rules as basic ELEVATE strategies, as shown in the previous sections.
In addition, we require three standard λ-calculus-specific transfor-
mations: η- and β-reduction, and η-abstraction.

multi-dimensional recursive tiling Our tiling strategy
expects a list of tile sizes, one per tiled dimension:

def tileND: List[Int] => Strategy[Rise]

The two-dimensional tiling, which is equivalent to TVM’s built-in
tile scheduling primitives, is expressed as tileND(List(x,y))(mm).
For this two-dimensional case, we also write tile(x,y)(mm).
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1 def tileND(n: List[Int]): Strategy[Rise] = DFNF ‘;‘ (n.size match {

2 case 1 => function(split(n.head)) // loop-blocking

3 case i => fmap(tileND(d-1)(n.tail)) ‘;‘ // recurse

4 function(split(n.head)) ‘;‘ // loop-blocking

5 interchange(i) }) // loop-reorder

Listing 5.4: ELEVATE strategy implementing tiling recursively for arbitrary
dimensions.

Figure 5.9: Visualization of the fmap traversal which traverses to the function
argument of a RISE-map primitive.

Listing 5.4 shows the ELEVATE implementation of the tiling op-
timization. The intuition for our tileND implementation is simple:
First, we ensure that the required rules are applicable to the input ex-
pression by normalizing the expression using the DFNF normal-form.
Then, we apply the previously introduced split strategy to every
map to be blocked, recursively going from innermost to outermost.
Finally, we interchange dimensions accordingly.

We start to explain how we recursively traverse (using fmap) to ap-
ply loop-blocking and then discuss how we interchange dimensions
in RISE (interchange).

recursively applying loop-blocking In order to recur-
sively apply the loop blocking strategy to nested maps, we make use
of the RISE-specific traversal fmap:

def fmap: Traversal[Rise] = s => function(argOf(map, body(s)))

Figure 5.9 visualizes the traversal of the fmap strategy, the traversed
path is highlighted in blue. fmap traverses to the function argument
of a map primitive and applies the given strategy s. Note that the
strategy requires the function argument of a map primitive to be
a function abstraction. This syntactic structure can be assumed
because we normalized the expression using DFNF. The fmap strategy
is useful because it can be nested to "push" the application of the
given strategy inside of a map-nest. For example,

fmap(fmap(split(n)))(DFNF(map(map(map(f)))))
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skips two maps and applies loop-blocking to the innermost map. In
Listing 5.4 line 3, we use fmap to recursively call tileND applying
loop-blocking first to the inner maps before to the outer map:

// apply loop-blocking to inner map

fmap(tileND(d-1)(n.tail)) ‘;‘

// apply loop-blocking to outer map

function(split(n.head)) ‘;‘ ...

loop-interchange in tile After blocking all maps recur-
sively, we use interchange to rearrange the dimensions in the correct
order. For simplicity, we describe the two-dimensional case of tiling
matrix multiplication. The untiled matrix multiplication implemen-
tation contains a loop nest of depth three, corresponding to a reduce

primitive nested in two map primitives in RISE. For brevity, we write
this loop-nest as (M.N.K), indicating the dimensions each loop iter-
ates over from outermost to innermost. After applying loop-blocking
to the outermost two loops, the loop-nest has been transformed into
a 5-dimensional loop-nest (M.mTile.N.nTile.K). To create the desired
tiling iteration order (M.N.mTile.nTile.K), we need to swap two inner
loops. To achieve this, we introduce two transpose patterns inside
the map nest using the rules shown in Figure 5.6:

// interchange-strategy used for 2D-tiling

val loopInterchange2D =

fmap( // in: map(map(map(map(dot)))) ...

addId ‘;‘ // map(id « map(map(map(dot))))

idToTranspose ‘;‘// map(transpose « transpose « map(map(map(dot))))

DFNF ‘;‘ // normalize intermediate expression

// ... map(transpose « map(map(map(dot))) « transpose)

argument(transposeMove)) ‘;‘

// out: map(transpose) « map(map(map(map(dot)))) « map(transpose)

normalize(mapFission)

Creating the two transpose patterns inside the map nest swaps the
iteration order in the desired way. The general interchange case adds
multiple transpose pairs in the required positions.

Using normalization, domain-specific traversals, and five RISE-
specific rewrite rules, we were able to define a multi-dimensional
tiling strategy.

5.5.3 Reordering as an ELEVATE Strategy

Finally, we briefly discuss the implementation of TVM’s reorder strat-
egy, which enables arbitrary loop-interchanges. Generally, TVM’s
reorder is a generalization of the loop-interchange optimization we
discussed in the previous subsection. Due to the loopless nature of
RISE, implementing TVM’s reorder primitive as a strategy is slightly
more involved. Instead of merely interchanging perfectly nested
loops, the same optimization effect is achieved in RISE by inter-
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changing the nesting of map and reduce patterns. Therefore, there
are multiple possible combinations to consider.

The most straightforward case is two nested maps, which corre-
spond to a two-dimensional loop-nest. To interchange the loops
created by the two maps, we introduce two transpose primitives and
move one before and one after the map-nest, as discussed in the
previous subsection (loopInterchange2D). In addition to interchang-
ing loop-nests created by nested maps, we also need to consider
interchanging nested map and reduce primitives. For computations
including matrix multiplication it is often beneficial to hoist re-
duction loops higher up in a loop nest as shown in the following
listings:

1 for (int i = 0; i < M; i++) { /* map */

2 float acc = 0.0f; /* reduce */

3 for (int j = 0; j < N; j++) {

4 acc += xs[j + (N * i)]; }

5 out[i] = acc; }

Listing 5.5: Reducing the rows of a matrix xs with the reduction as the inner loop.

1 float acc[M]; /* reduce */

2 for (int i = 0; i < M; i++) { acc[i] = 0.0f; }

3 for (int j = 0; j < N; j++) {

4 for (int i = 0; i < M; i++) { /* map */

5 acc[i] += xs[j + (N * i)]; }}

6 for (int i = 0; i < M; i++) { out[i] = acc[i]; }

Listing 5.6: Reducing the rows of a matrix xs with the reduction as the outer loop.

Transforming the code in Listing 5.5 into the code in Listing 5.6
enables different opportunities for parallelizing the reduction. For
example, the computation in Listing 5.6 can now be easily vectorized.

The following rule implements this interchange of nested map and
reduce primitives.

map(reduce(+)(0))(xs :: M.N.δ)

 
reduce(fun(acc, fun(y,

map(fun(x, fst(x) + snd(x)))(zip(acc)(y))))) // reduce-op

(generate(N)(0)) // reduce-init

(transpose(xs)) // reduce-input

By transposing the input and modifying the operator of the reduce

primitive we can interchange the nesting. Instead of reducing scalars
as in the input expression, the reduce-operator is transformed to
reduce arrays using the inner map. Due to the more complex AST
structure after performing such a transformation, the strategy pro-
ducing and traversing this tree is similarly complicated and will
not be discussed in detail. While it is possible to implement TVM’s
reorder primitive, this particular loop transformation is not a good
fit for the pattern-based abstractions in the RISE language.
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5.5.4 Abstractions for Describing Locations in RISE

In TVM, named identifiers describe the location at which the opti-
mization should be applied. For example, TVM’s split is invoked
with an argument specifying the loop to block:

1 k, = s[C].op.reduce_axis

2 ko, ki = s[C].split(k, factor=4)

Using identifiers ties schedules to computational expressions and
makes reusing schedules hard. ELEVATE does not use names to iden-
tify locations, but instead uses the traversals defined in Section 5.4.
Traversals are another example of how our approach facilitates reuse
– one of the key aims that we set out for our approach.

By using ELEVATE’s traversal strategies, we apply the basic schedul-
ing strategies in a much more flexible way: e.g., topDown(parallel)
traverses the AST from top to bottom and will thus always paral-
lelize the outermost map, corresponding to the outermost for loop.
tryAll(parallel) traverses the whole AST instead, and all possible
maps are parallelized.

To apply optimizations on large ASTs, it is often not sufficient to
use the topDown or tryAll traversals. For example, we might want
to block a specific loop in a loop-nest. Using topDown(split) always
blocks the outermost loop, and tryAll(split) blocks every loop in
the loop nest. Similarly, none of the introduced traversals so far
allow to describe a precise loop conveniently , or rather a precise
location, required for these kinds of optimizations.

strategy predicates Strategy predicates allow us to describe
locations in a convenient way. A strategy predicate checks the pro-
gram for a syntactic structure and returns Success without changing
the program if the structure is found. Two simple examples of strat-
egy predicates are isReduce and isApp that check if the current node
is a reduce primitive or an applied function respectively:

def isReduce: Strategy[Rise] = p => p match {

case reduce => Success(reduce)

case _ => Failure(isReduce) }

def isApp(funPredicate: Strategy[Rise]): Strategy[Rise] = p =>

p match {

case app(f,_) => (_ => p) <$> funPredicate(f)

case _ => Failure(isApp(s)) }

These predicates can be composed with the regular traversals to
define precise locations.

The ‘@‘ strategy allows to describe the application of strategies at
precise locations conveniently:

def ‘@‘[P](s: Strategy[P], t: Traversal[P]) = t(s)
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We write this function in infix notation and use Scala’s implicit
classes for this in our implementation. The left-hand side of the
‘@‘ operator specifies the strategy to apply, and the right-hand side
specifies the precise location as a traversal. This design visually
separates the strategy to apply from the traversal describing the
location. This abstraction is especially useful for sophisticated opti-
mization strategies with nested location descriptions. For RISE, we
specify multiple traversals and predicates, which can be extended as
needed. Two useful ones are outermost and mapNest that are defined
as follows:

def outermost: Strategy[Rise] => Traversal[Rise] =

predicate => s => topDown(predicate ‘;‘ s)

def mapNest(d: Int): Strategy[Rise] = p => (d match {

case x if x == 0 => Success(p)

case x if x < 0 => Failure(mapNest(d))

case _ => fmap(mapNest(d-1))(p) })

outermost traverses from top to bottom, and visits nested primitives
from outermost to innermost, trying to apply the predicate. Only
if the predicate is applied successfully, it applies the given strategy
s. Similarly, we define an innermost function which uses bottomUp

instead of topDown. The mapNest predicate recursively traverses in-
side a DFNF-normalized map-nest of a given depth using nested fmap

traversals. If the traversal is successful, a map-nest of depth d has
been found.

By combining these abstractions, we conveniently describe apply-
ing the tiling optimization to the two outermost loop nests elegantly
in ELEVATE:

(tile(32,32) ‘@‘ outermost(mapNest(2)))(mm)

5.6 evaluating scheduling strategies

In this section, we evaluate our functional approach targeting the
Optimization Challenge. We combine the strategies discussed in
the previous section to more sophisticated strategies that describe
optimizations equivalent to TVM schedules. Specifically, we use
matrix-matrix multiplication as our primary case study. We analyze
the performance achieved using code generated by the RISE compiler
compared to TVM generated code. Afterward, we briefly investigate
using ELEVATE to optimize programs of a different domain and com-
pare it to Halide, the state-of-the-art compiler for image processing
pipelines.
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1 // matrix multiplication in RISE

2 val dot = fun(as, fun(bs, zip(as)(bs) |>

3 map(fun(ab, mult(fst(ab))(snd(ab)))) |> reduce(add)(0) ) )

4 val mm = fun(a, fun(b,

5 a |> map( fun(arow, transpose(b) |> map( fun(bcol, dot(arow)(bcol) ))

6 )) ))

1 // baseline strategy in ELEVATE

2 val baseline = ( DFNF ‘;‘ fuseReduceMap ‘@‘ topDown )

3 (baseline ‘;‘ lowerToC)(mm)

Listing 5.7: RISE matrix multiplication (top) and baseline strategy in ELEVATE (bottom).

1 # Naive matrix multiplication algorithm

2 k = tvm.reduce_axis((0, K), 'k')

3 A = tvm.placeholder((M, K), name='A')

4 B = tvm.placeholder((K, N), name='B')

5 C = tvm.compute((M, N),lambda x,y: tvm.sum(A[x,k]*B[k,y], axis=k),name='C')

6

7 # TVM default schedule

8 s = tvm.create_schedule(C.op)

Listing 5.8: TVM matrix multiplication algorithm and baseline (default) schedule.

5.6.1 Optimizing Matrix Multiplication with ELEVATE Strategies

For our case study of matrix multiplication, we follow a tutorial from
the TVM authors [172] that discusses seven differently optimized
versions: baseline, blocking, vectorized, loop permutation, array packing,
cache blocks, and parallel. Each version is designed to improve the
previous version progressively. For each TVM schedule, we develop
an equivalent strategy implemented with ELEVATE and evaluate the
performance achieved. Using the TVM-like scheduling abstractions
implemented as strategies and the traversal utilities, we now discuss
how to describe entire schedules in ELEVATE.

baseline For the baseline version, TVM uses a default schedule
(Listing 5.8), whereas ELEVATE describes the implementation deci-
sions explicitly (Listing 5.7) – one of our key aims.

The TVM algorithm computes the dot product in a single state-
ment in Listing 5.8, line 5. The RISE program is shown at the top of
Listing 5.7 describes the dot product with separate map and reduce

primitives which are fused as described in the ELEVATE program
below using the fuseReduceMap rewrite rules from Figure 5.6. The
lowerToC strategy rewrites map into mapSeq and reduce into reduceSeq.
Both systems generate equivalent C code of two nested loops it-
erating over the output matrix and a single nested reduction loop
performing the dot product. For the following optimized versions,
we do not repeat the RISE and TVM programs if they are similar to
the previous version
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1 val appliedReduce = isApp(isApp(isApp(isReduce)))

2 val blocking = ( baseline ‘;;‘ // ‘;;‘ == (‘;‘ DFNF ‘;‘)

3 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘

4 fissionReduceMap ‘@‘ outermost(appliedReduce)‘;;‘

5 split(4) ‘@‘ innermost(appliedReduce)‘;;‘

6 reorder(List(1,2,5,6,3,4)))

7 (blocking ‘;‘ lowerToC)(mm) // apply strategy to mm and lower for codegen

1 # blocking version

2 xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], 32, 32)

3 k, = s[C].op.reduce_axis

4 ko, ki = s[C].split(k, factor=4)

5 s[C].reorder(xo, yo, ko, ki, xi, yi)

Listing 5.9: ELEVATE blocking strategy (top). TVM blocking schedule (bottom).

1 val loopPerm = (

2 tile(32,32) ‘@‘ outermost(mapNest(2)) ‘;;‘

3 fissionReduceMap ‘@‘ outermost(appliedReduce) ‘;;‘

4 split(4) ‘@‘ innermost(appliedReduce) ‘;;‘

5 reorder(List(1,2,5,3,6,4)) ‘;;‘

6 vectorize(32) ‘@‘ innermost(isApp(isApp(isMap))))

7 (loopPerm ‘;‘ lowerToC)(mm)

1 xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], 32, 32)

2 k, = s[C].op.reduce_axis

3 ko, ki = s[C].split(k, factor=4)

4 s[C].reorder(xo, yo, ko, xi, ki, yi)

5 s[C].vectorize(yi) # added already in 'vectorized'

Listing 5.10: ELEVATE loop permutation strategy (top) and TVM’s schedule (bottom).

blocking For the blocking version, we reuse the lowerToC strategy
and the abstractions built in the previous sections, emulating the
TVM schedule, as shown in Listing 5.9. First, we tile, then we split,
and then we reorder, just as specified in the TVM schedule. To split

the reduction, we first need to fission the fused map and reduce
primitives again using fissionReduceMap. We describe locations using
outermost and innermost, applying tile to the outermost maps and
split to the nested reduction. In contrast to TVM, for reorder, we
identify dimensions by index rather than by name. We introduce
the ‘;;' combinator for convenience. It denotes that we apply DFNF

to normalize intermediate expressions between each step.

vectorized and loop permutation For brevity, we sum-
marize the vectorized and the loop permutation version. The vector-
ized version vectorizes the innermost loop. We achieve this using
(vectorize(32)'@'innermost(isMap)), as discussed earlier. The loop
permutation version shown in Listing 5.10 performs the same vec-
torization and additionally applies a different reordering of loops
compared to the prior blocking version.
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1 val appliedMap = isApp(isApp(isMap))

2 val isTransposedB = isApp(isTranspose)

3

4 val packB = storeInMemory(isTransposedB,

5 permuteB ‘;;‘

6 vectorize(32) ‘@‘ innermost(appliedMap) ‘;;‘

7 parallel ‘@‘ outermost(isMap)

8 ) ‘@‘ inLambda

9

10 val arrayPacking = packB ‘;;‘ loopPerm

11 (arrayPacking ‘;‘ lowerToC )(mm)

1 # Modified algorithm

2 bn = 32

3 k = tvm.reduce_axis((0, K), 'k')

4 A = tvm.placeholder((M, K), name='A')

5 B = tvm.placeholder((K, N), name='B')

6 pB = tvm.compute((N / bn, K, bn), lambda x,y,z: B[y, x*bn+z], name='pB')

7 C = tvm.compute((M,N), lambda x,y:

8 tvm.sum(A[x,k] * pB[y//bn,k, tvm.indexmod(y,bn)],axis=k),name='C')

9

10 # Array packing schedule

11 s = tvm.create_schedule(C.op)

12 xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)

13 k, = s[C].op.reduce_axis

14 ko, ki = s[C].split(k, factor=4)

15 s[C].reorder(xo, yo, ko, xi, ki, yi)

16 s[C].vectorize(yi)

17 x, y, z = s[pB].op.axis # prepare scheduling optimized pB stage

18 s[pB].vectorize(z)

19 s[pB].parallel(x)

Listing 5.11: ELEVATE array packing strategy (top), TVM array packing schedule and
optimized algorithm (bottom).

array packing So far, ELEVATE’s strategies and TVM’s schedules
were reasonably similar. The array packing version is the first to
emphasize the flexibility of our holistic functional approach. As
already discussed in the motivation section, some optimizations
are not expressible in TVM’s scheduling API without changing the
algorithm – This clearly violates the separation between specifying
computations and optimizations. Here specifically, the TVM array
packing version in Listing 5.11 (bottom) permutes the elements of
the B matrix in memory to improve the memory access patterns by
introducing an additional computation pB in lines 6-6, before using
it in the computation in line 7.

For our implementation of the array packing version in Listing 5.11

(top), we are not required to change the RISE program but define
and apply the array packing of matrix B simply as another rewrite
step in ELEVATE using the storeInMemory strategy described below.
To complete the entire strategy for this version, we compose the
array packing together with permuteB that uses transpose primitives
to implement the permutation similarly to interchange for the tile
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1 def storeInMemory(what: Strategy[Rise],

2 how : Strategy[Rise]): Strategy[Rise] = { p =>

3

4 extract(what)(p) »= (extracted => { how(extracted) »= (storedSubExpr => {

5

6 val idx = Identifier(freshName("x"))

7 replaceAll(what, idx)(p) match {

8 case Success(replaced) =>

9 Success(toMem(storedSubExpr)(fun(idx, replaced)))

10 case Failure(_) => Failure(storeInMemory(what, how))

11 }})}}

12

13 // helper-functions

14 def replaceAll(exprPredicate: Strategy[Rise],

15 withExpr: Rise): Strategy[Rise] =

16 p => tryAll(exprPredicate ‘;‘ insert(withExpr))(p)

17 def insert(expr: Rise): Strategy[Rise] = p => Success(expr)

18 // find and return Rise expr which matches the exprPredicate

19 def extract(exprPredicate: Strategy[Rise]): Strategy[Rise] = ...

20 }

21

22 def inLambda(s: Strategy[Rise]): Strategy[Rise] =

23 isLambda ‘;‘ ((p:Rise) => body(inLambda(s))(p)) <+ s

Listing 5.12: ELEVATE strategy to store RISE subexpressions to memory.

strategy. Finally, we can reuse the prior loopPerm strategy to complete
this version.

The strategy for storing sub-expressions in memory uses the
toMem primitive of RISE and is defined as shown in Listing 5.12. The
storeInMemory strategy expects two arguments: what - a strategy pred-
icate describing the sub-expression to store and, how - the strategy
specifying how to perform the copy. In the arrayPacking strategy,
we want to store a permuted version of the transposed B (described
by the isTransposedB predicate) to memory. Since every RISE sub-
expression can be stored in memory at any time, the storeInMemory

strategy only fails if the desired sub-expression (described by what)
cannot be found or cannot be stored as specified in how.

The toMem primitive is introduced in two steps: First, the sub-
expression needs to be removed from the original expression (p) and
be replaced with the new identifier x. Second, the value for the new
identifier x needs to be extracted from the original expression p.

cache blocks and parallel The TVM version in Listing 5.13

changes the algorithm yet again (not shown for brevity) to introduce
a temporary buffer (CC) for the accumulation along the K-dimension
to improve the cache writing behavior and unrolls the inner re-
duction loop. The RISE code generator makes accumulators for
reductions always explicit. Therefore, we reuse the array packing
version adding strategies for unrolling the innermost reduction and
parallelizing the outermost loop.
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1 val par = (

2 arrayPacking ‘;;‘

3 (parallel ‘@‘ outermost(isMap)) ‘;;‘

4 ‘@‘ outermost(isToMem) ‘;;‘

5 unroll ‘@‘ innermost(isReduce))

6

7 (par ‘;‘ lowerToC)(mm)

1 # Another change to the algorithm omitted here: Introducing CC stage

2 s = tvm.create_schedule(C.op)

3 CC = s.cache_write(C, 'global')

4 xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)

5 s[CC].compute_at(s[C], yo)

6 xc, yc = s[CC].op.axis

7 k, = s[CC].op.reduce_axis

8 ko, ki = s[CC].split(k, factor=4)

9 s[CC].reorder(ko, xc, ki, yc)

10 s[CC].unroll(ki)

11 s[CC].vectorize(yc)

12 s[C].parallel(xo)

13 x, y, z = s[pB].op.axis

14 s[pB].vectorize(z)

15 s[pB].parallel(x)

Listing 5.13: ELEVATE parallel strategy (top). TVM parallel schedule (bottom).
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Figure 5.10: Total number of successful rewrite steps when applying different
optimization strategies.

5.6.2 Scalability and Overhead of Rewriting

We have demonstrated that it is feasible to implement a TVM-like
scheduling language by expressing schedules as compositions of
reusable strategies. Using our holistic approach, we express the
computation only once in RISE and express all optimizations as
ELEVATE strategies. In this section, we are interested in the scalability
and overhead of our functional rewrite-based approach using matrix
multiplication as a case study of high-performance compilation.

We are counting the number of successfully applied rewrite steps
performed when applying a strategy to the RISE matrix multiply
expression. Every intermediate step is counted, which includes
traversals as these are implemented as rewrite steps. For example,
id(fun(x,x)) would be counted as one rewrite step whereas (body
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(id))(fun(x,x)) would be counted as two steps because we also
count the traversal into the function body as one step.

Figure 5.10 shows the number of rewrites for each version. No
significant optimizations are applied to the baseline version, and 657

rewrite steps are performed. However, as soon as interesting opti-
mizations are applied, we reach about 40,000 steps for the next three
versions and about 63,000 for the most complicated optimizations.
Applying the strategies to the unoptimized RISE expression took less
than two seconds per version on a commodity notebook.

These high numbers clearly show the scalability of our compo-
sitional approach in which complex optimizations are composed
out of a small set of fundamental building blocks. It also shows that
abstractions are required to control this many rewrite steps. The
high-level strategies encode practical optimizations and hide mas-
sive numbers of individual rewrite steps that are actually performed.
Simultaneously, developing and debugging such sophisticated strate-
gies using ELEVATE is still possible as there is a clear pathway towards
developing debugging tools for recording traces or rewrites or re-
porting which strategy was not applicable. Additionally, due to
the compositional nature of our strategy approach, one can easily
inspect intermediate RISE expressions. In contrast, debugging TVM
or Halide schedules is much harder as the scheduling primitives
are provided as black-box function calls operating on the internal
intermediate program representation.

5.6.3 Performance Comparison against TVM

In this section, we are interested in the performance achieved when
optimizing RISE programs with ELEVATE compared to TVM. Ideally,
the RISE code optimized with ELEVATE should be similar to the TVM-
generated code and achieve competitive performance. We gener-
ated LLVM code with TVM (version 0.6.dev) and C code for RISE
annotated with OpenMP pragmas for the versions which include
parallelization or vectorization. The RISE generated C code was com-
piled with clang (v.9.0.0) using -Ofast -ffast-math -fopenmp, which
echoes the settings used by TVM and Halide [71]. We used an Intel
core i5-4670K CPU (frequency at 3.4GHz) running Arch Linux (ker-
nel 5.3.11-arch1-1). We report wall-time for RISE-generated code and
used TVM’s built-in measurement API. We performed 100 iterations
per version reporting the median runtimes in milliseconds.

Figure 5.11 shows the performance of RISE and TVM generated
code. The code generated by RISE controlled by the ELEVATE optimiza-
tion strategies performs competitively with TVM. Our experiment
indicates a matching trend across versions compared to TVM, show-
ing that our ELEVATE strategies encode the same optimizations used
in the TVM schedules. The most optimized parallel RISE generated
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Figure 5.11: Performance of TVM vs. RISE generated code that has been optimized
by ELEVATE strategies.
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Figure 5.12: Performance evaluation of Halide and RISE generated code for the
binomial filter application. Optimization decisions for RISE are implemented as
ELEVATE strategies.

version improves the performance over the baseline by about 110×.
The strategies developed in an extensible style by composing in-
dividual rewrite steps using ELEVATE, are practically usable and
provide competitive performance for important high-performance
code optimizations.

5.6.4 Performance Comparison against Halide

Since the scheduling languages of Halide and TVM are very similar,
we additionally performed a third experiment comparing against
the Halide compiler that is specialized in high-performance code
generation for image processing. Specifically, we implemented a bi-
nomial image processing filter in RISE, corresponding to the example
described in [141]. As with the comparison against TVM, we used
ELEVATE to describe three different optimization strategies (each with
a sequential and a parallel version), which are equivalent to three
different schedule programs using Halide. Optimizing the binomial
filter application also required to modify the algorithm in Halide,
similar to the array packing and parallel example in TVM, whereas we
were again able to express all optimizations using ELEVATE strategies
only.
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Figure 5.12 shows the performance of the Halide and RISE gener-
ated code measured on a ARM Cortex A7 quad-core (The 4 LITTLE
cores of a Samsung Exynos 5 Octa 5422). We can see – not surpris-
ingly – that the non-parallel versions on the left are significantly
slower than the parallel versions. The Halide generated code is 10-
15% faster than the RISE generated code. Improvements to the RISE
code generator might close this gap in the future.

Crucially, we again observe the same trend for performance im-
provements across versions. These results demonstrate that our
extensible and rewrite based approach is capable of achieving com-
petitive performance to state-of-the-art compilers used in production.
Encoding optimizations as extensible building blocks using rewrite
rules thus poses a viable solution to the Optimization Challenge. As
a last case study, we use ELEVATE to optimize a different program-
ming language to emphasizing that ELEVATE is not specialized only
to optimize RISE programs.

5.7 case study : automatic differentiation

So far, we used RISE as the only example of a language transformed
with ELEVATE. However, ELEVATE and its rewrite-based optimization
approach are flexible and not restricted to a single language. There-
fore, in this final case study, we will additionally target the F̃ lan-
guage that has been introduced in [160].

F̃ is a small functional language capable of automatically comput-
ing the derivative of arbitrary F̃ functions. Automatic differentiation
is often required for back-propagation computations to adjust weight
matrices when training neural networks. Implementing automatic
differentiation requires following precise rules and is thus not too
difficult; however, generating efficient differentiated programs is
non-trivial. A common problem for achieving high-performance
is an explosion in the code size of differentiated programs, and F̃
achieves efficiency by rewriting the differentiated code using several
simplification rules.

Shaikhha et al. [160] introduce multiple rewrite rules for opti-
mizing F̃ programs and provide instructive examples. For example,
they show that an F̃ program transposing a matrix twice can be
rewritten into a more concise program without transposition (see
Figure 5.13) by systematically applying the F̃ simplification rules.
The authors do not provide a derivation or explanation for how
exactly the rewriting between these programs is specified. Instead,
they state that: “by applying the loop fusion rules and performing further
partial evaluation, the expression is derived”.

We are interested in exploring the flexibility of ELEVATE and if we
can specify the rewrite rule applications programmatically. There-
fore, we implemented F̃ as an embedded language in Scala using
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1 let MT = build (length M[0]) (fun i ->

2 build (length M) (fun j -> M[j][i] ) ) in

3 build (length MT[0])(fun i ->

4 build (length MT) (fun j -> MT[j][i] ) )

1 build (length M) (fun i ->

2 build (length M[0]) (fun j -> M[i][j] ) )

Figure 5.13: Transposing a matrix twice in F̃ (top) and the rewritten program
without transposition (bottom). This example is taken from [160].

an algebraic data type FSmooth. We also implemented the provided
rewrite rules for simplifying (differentiated) F̃ programs, such as the
fusion rules:build constructs an array

in F̃ given a size and a
function for generating
values of type M [160]:

build: Card =>

(Index => M) =>

Array<M>

(build e0 e1)[e2]  e1 e2
length (build e0 e1)  e0

For example, the former rule states the following identity: Construct-
ing an array of size e0 that is initialized with values according to e1

and accessing its value at position e2 ((build e0e1)[e2]) is equiva-
lent to merely calling the value-generating function e1 with e2 as
argument, as shown on the right-hand side of the rewrite rule. The
latter rule states that constructing an array of size e0 (build e0e1),
and immediately querying its length is equivalent to the simplified
expression on the right-hand side (e0).

We implement these fusion rules and all other F̃ rules as ELEVATE
strategies, as described in the previous sections. For example, the
fusion rules are implemented as follows:

def buildGet(p: FSmooth): Strategy[FSmooth] = p match {

case app(get,(app(build,(e0,e1)),e2)) => Success(app(e1,e2))

case _ => Failure(buildGet) }

def lenBuild(p: FSmooth): Strategy[FSmooth] = p match {

case app(length, app(build, (e0, e1))) => Success(e0)

case _ => Failure(lenBuild) }

Encoding the F̃ rules as ELEVATE strategies allows us to use
normalize and lChoice to specify a simple normal-form that exhaus-
tively applies a given set of simplification rules:Here, letPartialEval,

letApp, and funToLet

refer to other F̃
simplification rules, as

described in [160].

normalize(buildGet <+ lenBuild <+ letPartialEval <+

letApp <+ funToLet)

This ELEVATE strategy successfully rewrites the doubly-transposed
F̃ program shown in Figure 5.13 (top) into the non-transposed form,
as shown on the bottom. Tracing the execution of the ELEVATE strategy
allows us to obtain the exact sequence of rewrite steps. In this case,
the doubly-transposed expression requires 12 rewrite steps to be
transformed into the non-transposed version.
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Additionally, we implemented the other F̃ simplification examples
using ELEVATE strategies and, due to our programmatic approach,
we even identified a minor bug in one of their examples. Generally,
this brief case-study shows ELEVATE’s flexibility to implement and
optimize another existing rewrite system, and that ELEVATE is not
restricted to rewrite RISE programs.

5.8 conclusion

In this chapter, we presented ELEVATE, a language for defining op-
timization strategies. With ELEVATE, we aim to address the Opti-

The Optimization Challenge:

How can we encode and apply
domain-specific optimizations
for high-performance code
generation while providing
precise control and the ability
to define custom
optimizations, thus achieving
a reusable optimization
approach across application
domains and hardware
architectures? (Section 1.2.2)

mization Challenge defined in Section 1.2.2. We showed that our
high-performance program optimization approach successfully:

• separates concerns by truly separating the computation and
strategy languages;

• facilitates reuse of computational patterns and optimizations
encoded as rewrite rules;

• enables composability by building programs and rewrite strate-
gies as compositions of a small number of fundamental build-
ing blocks;

• allows reasoning about programs and strategies since both are
expressed as functional programs with well-defined semantics;
and

• is explicit by empowering users to control the optimization
strategy that is applied by our compiler.

In contrast to existing imperative systems with scheduling APIs
such as Halide, Fireiron, or TVM, programmers are not restricted
to apply set of built-in optimizations but can define their own opti-
mization strategies. We also showed that our optimization approach
is applicable to different programming languages such as RISE or F̃.
Finally, our experimental evaluation demonstrates that our holistic
functional approach achieves competitive performance compared to
the state-of-the-art code generators Halide and TVM.





6T O WA R D S A U N I F I E D
C O M P I L AT I O N A P P R O A C H

In the three previous technical chapters, we have demonstrated the
potential of high-performance domain-specific compilation. How-
ever, due to limited reusability between existing compilers, building
a domain-specific compiler for targeting a new application domain
or hardware architecture is still a complicated and time-intensive
process. Figure 6.1 visualizes this traditional process of achieving
domain-specific compilation and summarizes its challenges, as iden-
tified in Chapter 1.

In this chapter, we begin by summarizing our individual contribu-
tions presented in the previous chapters. Afterward, we present our
vision of achieving high-performance domain-specific compilation
without constructing a domain-specific compiler by combining the
individual contributions to a novel unified compilation approach.
Finally, we discuss how the work presented in this thesis can be
further extended in the future.

6.1 summary : high-performance domain-specific com-
pilation without domain-specific compilers

In the following sections, we briefly summarize our contributions
and refer back to the advantages and challenges related to domain-
specific compilation, as introduced in Chapter 1.

Figure 6.1: The traditional way of using a domain-specific compiler to achieve
high-performance domain-specific compilation and its associated challenges, as
identified and discussed in Chapter 1 of this thesis.
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6.1.1 Demonstrating the Potential of Domain-Specific Compilation

In Chapter 3, we introduced Fireiron, a domain-specific compiler
for generating fast matrix multiplication kernels for NVIDIA GPUs.

fireiron : a data-movement-aware-compiler for gpus

Existing high-performance domain-specific compilers generally treat
optimizations for data-movements as second-class citizens. With
Fireiron, we introduced a compiler IR and scheduling language
in which both computations and data movements are first-class citi-
zens, meaning that they can be scheduled with the same primitives.
Fine-grained control over data movement optimizations is especially
crucial for generating high-performance implementations targeting
GPUs. In order to achieve near peak performance, programmers
must use the GPU’s multi-layered compute and memory hierarchies
as efficiently as possible. Doing this requires precise mappings of
which element of the compute hierarchy processes which part of
the computation, and fine-grained control over the coordination of
data movements through the various memory hierarchy levels. The
increasing diversity in memory hierarchy levels demonstrates the
importance of optimizing data movements as first-class concepts
in a scheduling language of a domain-specific compiler targeting
GPUs. For example, the introduction of the warp-wide register frag-
ments, which are required for Tensor Core computations on modern
NVIDIA GPUs, highlights this challenge.

The two major concepts we introduced with Fireiron are Specifica-
tions and Decompositions. Specifications provide high-level abstrac-
tions for gradually decomposing computations and data movements
(using the Decompositions) until they match assembly instructions,
accelerator primitives, or predefined microkernels. Representing
each (instructions, primitives, and microkernels) using precise speci-
fications as a unifying concept enables this gradual decomposition.

We have shown that Fireiron’s specifications and decompositons
allow performance engineers to precisely describe high-performance
implementations that must be written so far in low-level assembly
instead. The performance achieved by the Fireiron-generated kernels
shows 1) that Fireiron can accurately capture the optimizations that
humans typically apply by hand by in low-level code by matching
the performance of handwritten implementations on different GPU
architectures, and 2) that Fireiron can be used by performance
engineers to find and express implementations that even outperform
high-performance vendor library routines.

The design and implementation of the Fireiron domain-specific
compiler is the first major contribution of this thesis. It demonstrates
the potential of domain-specific compilation and the challenges of
designing a domain-specific compiler at the same time.
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6.1.2 Addressing the Intermediate Representation Challenge

The Intermediate
Representation Challenge:

How to define an IR for
high-performance
domain-specific compilation
that can be reused across
application domains and
hardware architectures while
providing multiple levels of
abstraction? (Section 1.2.1)

Chapter 4 discussed how to express stencil computations by extend-
ing the generic, functional, and pattern-based IR Lift.

high-performance stencil code generation with lift

By extending the existing Lift IR with two new generic primitives
pad and slide, we showed that it is possible to express domain-specific
computations (stencils) with domain-agnostic primitives. Instead of
adding a single stencil-specific new primitive, we showed that stencil
computations, in general, can be conceptually decomposed into three
fundamental steps: 1) boundary handling, 2) neighborhood creation,
and 3) output computation. Each of these steps is expressible with a
single Lift primitive: pad, slide, and map.

To express arbitrary multi-dimensional stencil computations, we
showed that it is possible to define higher-dimensional stencil
abstractions by simply nesting and composing the existing one-
dimensional primitives. We did not need to introduce specialized
primitives for higher dimensions as often done in related approaches.
Since we can reuse the existing map primitive and only use one-
dimensional primitives, optimizing stencil computations expressed
in Lift requires only minor additions. We introduced rules to rewrite
expressions using the two new primitives and showed how we can
reuse the remaining existing Lift approach for optimizing pro-
grams. The performance achieved by the Lift-generated stencil
code matches and even outperforms handwritten benchmarks and a
state-of-the-art polyhedral compiler on different GPU architectures.

At the time of this work, Lift had only been used for expressing
and optimizing dense linear algebra computations. Our work on
stencil computations showed that Lift’s approach is far more pow-
erful and that its generic, domain-agnostic IR can be used to express
computations of different domains, such as stencil computations.
In fact, with the work described in Chapter 4, we showed that the
Lift approach is a viable solution to the IR Challenge identified in
Section 1.2.1. Today, Lift and RISE (Lift’s spiritual successor, see
Section 5.3.1) are used to express computations of many more do-
mains, including sparse linear algebra, image processing, machine
learning, and high-level synthesis for FPGAs. Many computations
of these domains expressed in Lift reuse the discussed pad and
slide primitives in different contexts, which shows that they too
are not stencil-specific but rather as flexible as the already existing
primitives.

Demonstrating that the Lift IR successfully solves the IR Chal-
lenge by expressing domain-specific multi-dimensional stencil com-
putations that require only small extensions to the existing generic
IR is the second major contribution of this thesis.
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6.1.3 Addressing the Optimization Challenge

The Optimization Challenge:

How can we encode and apply
domain-specific optimizations

for high-performance code
generation while providing

precise control and the ability
to define custom

optimizations, thus achieving
a reusable optimization

approach across application
domains and hardware

architectures? (Section 1.2.2)

In Chapter 5, we introduced ELEVATE, a language for describing
program optimization strategies as compositions of rewrite rules.

a language for describing optimization strategies

Inspired by earlier work on strategy languages for term rewriting
systems, we introduced ELEVATE, a language for encoding and apply-
ing optimization strategies as composable rewrites to address the
Optimization Challenge defined in Section 1.2.2. ELEVATE allows us
to define AST transformations as simple rewrite rules for arbitrary
target languages and enables us to combine them into sophisticated
optimization strategies using different combinators and traversals.

In a detailed case study, we demonstrated how to encode and
apply domain-specific machine learning optimizations as ELEVATE
strategies for rewriting RISE matrix-multiplication expressions. Us-
ing TVM’s state-of-the-art scheduling language as an example, we
showed how to decompose and implement each scheduling primi-
tive as a composition of simple rewrite rules in ELEVATE. For example,
we showed how the two-dimensional TVM tile primitive is express-
ible as a composition of only a few rewrite rules, traversals, and
normal-forms. Our resulting tiling strategy is even more expressive
than TVM’s built-in primitive as ours allows us to tile arbitrary
dimensions due to being recursively defined based on common
functional programming techniques.

Chapter 4 discussed how we decomposed stencil computations to
gain expressiveness by re-composing simpler computational prim-
itives. Similarly, with ELEVATE, we demonstrated the possibility of
decomposing optimizations typically applied in domain-specific
compilers for achieving reusability by composing simple rewrite
rules that are easy to reason about. Expressing domain-specific op-
timizations as compositions of simple rules leads to strategies that
transparently perform thousands of rewrite steps. With ELEVATE, we
can hide those behind high-level abstractions that are as easy to use
as state-of-the-art scheduling languages while being significantly
more flexible due to the possibility to redefine or extend the set of
rewrite rules.

By applying ELEVATE to simplify automatically differentiated F̃ pro-
grams, we demonstrated ELEVATE’s flexibility to optimize programs
from different domains, one of the main goals we defined in the
Optimization Challenge.

The design, implementation, and application of the ELEVATE strat-
egy language to achieve high-performance domain-specific compila-
tion, targeting the Optimization Challenge, is the third major and
final contribution of this thesis.
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Figure 6.2: Our approach for achieving high-performance domain-specific compi-
lation without domain-specific compilers. We use RISE as a flexible and domain-
agnostic intermediate representation and ELEVATE for encoding high-performance
program optimizations as composable rewrite strategies. This design enables the
development of different domain-specific abstractions and reuses the same domain-
agnostic compiler for high-performance code generation.

6.2 towards a unified approach for high-performance

domain-specific compilation

In this section, we introduce our vision of a holistic and unified
approach for achieving high-performance domain-specific compi-
lation without domain-specific compilers. Specifically, we discuss
how combining the individual contributions summarized in the
previous section leads to a reusable compiler design for leveraging
the benefits of domain-specific compilation without requiring the
construction of domain-specific compilers.

Figure 6.2 presents our novel compilation approach. This design
is discussed in detail in the following paragraphs. Generally, we
envision a domain-agnostic compiler that is reusable across different
application domains and hardware architectures and that is capable
of generating high-performance code.

a reusable domain-agnostic compiler The primary mo-
tivation for the work in the thesis is to leverage the advantage of
high-performance domain-specific compilation (as demonstrated
in Chapter 3) without requiring the construction of a new domain-
specific compiler for every new application domain or hardware
architecture. Therefore, we require a reusable and domain-agnostic
compilation approach.

In Chapter 1, we analyzed existing state-of-the-art general-
purpose and domain-specific compilers. We identified two chal-
lenges that must be addressed for achieving our goal: We need a
reusable IR that is capable of providing domain-specific abstractions
while being itself domain-agnostic (Section 1.2.1). In addition, we
identified the need for a reusable optimization approach that pro-
vides precise control over where, how, and when domain-specific
optimizations are applied (Section 1.2.2).
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Figure 6.3: Examples of possible domain-specific abstractions that already are,
or potentially could be lowered into, RISE programs and ELEVATE optimization
strategies.

We argue that using RISE as intermediate representation and ELE-
VATE for controlling the optimization process successfully addresses
exactly these two challenges. Therefore, the envisioned reusable
domain-agnostic compiler shown in Figure 6.2 uses RISE and ELE-
VATE as its two core components. Both languages, RISE and ELEVATE,
follow the same design principle of providing an intentionally small
set of generic and composable building blocks. RISE provides com-
putational building blocks in the form of functional primitives for
manipulating arrays; and ELEVATE provides reusable primitives for
composing rewrite rules that encode program optimizations to so-
phisticated optimization strategies.

external and extensible domain-specific abstractions

To leverage the benefits of domain-specific compilation, our com-
piler needs to be able to represent domain-specific computations and
optimize those with domain-specific optimizations. We achieve this
by providing both domain-specific computations and optimizations
as external high-level abstractions, as shown in Figure 6.2. This mod-
ular design allows us to design different abstractions for different
domains and hardware architectures that are still all compiled using
the same high-performance domain-agnostic compiler.

Figure 6.3 shows examples of domain-specific abstractions dis-
cussed in this thesis that already are, or could be lowered to, RISE
programs and ELEVATE strategies. Generally, in Chapters 4 and 5, we
demonstrated how the building blocks provided by Lift (and thus
RISE), as well as ELEVATE, are combined to define high-level domain-
specific abstractions. Crucially, we showed that they provide the
same level of abstraction as existing state-of-the-art domain-specific
languages and compilers. In fact, Chapter 5 already presented a
prototype implementation of the compilation approach shown in
Figure 6.2: In our case study on the machine learning compiler TVM,
we used high-level RISE programs to express the computations and
ELEVATE for implementing TVM’s scheduling primitives for guiding
the optimization. Similarly to how TVM provides its computational
building blocks and scheduling primitives to domain-scientists and
performance engineers, we expose our RISE and ELEVATE abstractions
as machine learning domain-specific abstractions in a library, as
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shown on the right-hand side of Figure 6.3. Crucially, in contrast
to TVM, our abstractions are not built into the compiler. Instead,
our domain-agnostic compiler is only aware of the small set of
core RISE and ELEVATE building blocks; all high-level domain-specific
abstractions are external and replaceable.

This allows us to reuse the same domain-agnostic compiler not
only to generate high-performance machine learning code but also
to generate high-performance stencil computations. The domain-
specific stencil abstractions discussed in Chapter 4, namely express-
ing stencil computations using pad, slide, and map, and optimizations
such as overlapped tiling, can be defined as RISE expressions and
ELEVATE strategies.

As shown in Figure 6.3, we also believe that we can reuse the same
domain-agnostic compilation approach for compiling Fireiron’s ma-
trix multiplication specific abstractions into high-performance code
instead of using Fireiron’s own domain-specific code generator.
Specifically, this requires a lowering of Fireiron’s Specifications and
Decompositions into RISE programs and ELEVATE strategies, similar
to the work presented in the TVM case study.

conclusion Our vision of a unified approach to domain-specific
compilation, as shown in Figure 6.2, will greatly improve the state-
of-the-art in developing optimizing compilers for achieving high
performance. We presented a novel approach for achieving the ben-
efits of high-performance domain-specific compilation without the
need to develop domain-specific compilers. The key idea of our
approach is decomposing both domain-specific computations and
their optimizations into a small set of generic building blocks. In
contrast to existing domain-specific compilers, this decomposition
allows us to avoid relying on compiler-internal built-in domain-
specific abstractions for achieving high performance. Instead, we
simply express domain-specific computations and their optimiza-
tions as compositions of those generic building blocks. Using RISE as
intermediate representation and ELEVATE for controlling the optimiza-
tion process enables the development of external and replaceable
high-level domain-specific abstractions, as shown in Figure 6.3. Ul-
timately, this unified compilation approach allows us to reuse the
same domain-agnostic compiler for many application domains and
hardware architectures, as we have shown in the previous chapters.

6.3 future work

As discussed in the previous section, our three individual contribu-
tions can naturally be combined to achieve a holistic and unified
compilation approach. Figure 6.4 shows a more detailed view of
this approach and includes possible future extensions. Here, we use
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Figure 6.4: One possibility to combine and extend the approaches introduced in this
thesis (extensions are shown in gray). Extending the set of Fireiron specifications
and decompositions and implementing them in terms of RISE expressions and
ELEVATE strategies allows us to leverage the advantages of each separate approach.

Fireiron for providing high-level domain-specific abstractions and
use deep learning as an example application domain. We briefly
outline this extended approach in the following and discuss the
single extensions in more detail in the subsequent subsections.

Fireiron’s specifications and decompositions already provide easy-
to-use high-level abstractions for domain-scientists and performance
engineers. Raising the abstraction level by defining higher-level
constructs such as complete neural network architectures like Long-
Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), or
Convolutional Neural Networks (CNN) could even improve Fire-
iron’s usability. Each of these architectures defines a computations
graph performing typical machine learning computations, including
matrix multiplications or convolutions in a specific sequence. Sim-
ilarly to how high-performance libraries such as cuBLAS provide
multiple implementations for the same computation, we can imagine
providing predefined optimization strategies as high-performance
Fireiron decompositions in a library, as shown in Figure 6.4 (top
right).

Instead of using Fireiron’s code generator, a useful next step
would be to implement Fireiron’s specs, e.g., MatMul, in terms of
RISE (or Lift) expressions, and Fireiron’s decompositions as ELEVATE
strategies. This way, Fireiron acts as a high-level library providing
easy-to-use abstractions for both domain-scientists as well as per-
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formance engineers. At the same time, we would make use of the
more principled strategic rewriting of RISE programs using ELEVATE
that is based on a solid foundation of fundamental functional pro-
gramming techniques. However, the RISE code generator needs to be
adjusted to generate CUDA code that uses Tensor Cores to achieve
the same performance as Fireiron’s current code generator.

In the following, we discuss our envisioned extensions and en-
hancements in more detail.

6.3.1 Enhancing the Fireiron Domain-Specific Compiler

In the following, we discuss several possible extensions and enhance-
ments for Fireiron.

implementing fireiron using rise and elevate The first
possible enhancement for Fireiron would be to implement its two
core concepts - specifications and decompositions - in terms of
RISE and ELEVATE, respectively. Currently, as described in Chapter 3,
Fireiron is implemented as a standalone domain-specific compiler
with its own ad-hoc code generation implementation. Implementing
Fireiron in terms of RISE and ELEVATE would allow us to replace the
existing code generator and reuse the RISE code generator while
driving the optimization process using formal rewrite rules as speci-
fied in ELEVATE strategies. As we have seen in the previous chapters,
both RISE and ELEVATE are based on fundamental functional program-
ming techniques to achieve high-performance compilation from first
principles.

We believe there is a strong correspondence between Fireiron
specifications and RISE expressions as well as between Fireiron’s de-
compositions and ELEVATE strategies. For example, a Fireiron MatMul

specification, as discussed in Chapter 3, is implementable using
a RISE matrix multiplication expression, as seen in Chapter 5. Si-
multaneously, a Fireiron decomposition could be implemented as
an ELEVATE strategy, similarly to how we discussed the implemen-
tation of TVM’s scheduling primitives as strategies. However, RISE
does not yet support the generation of CUDA code. Notably, it does
not support using specialized Tensor Core instructions required to
achieve the same performance as the code generated by Fireiron’s
ad-hoc code generator. It also remains an interesting research ques-
tion if and how Fireiron’s data-movement related optimizations
are expressible as RISE programs and whether these programs are
derivable by applying ELEVATE strategies.

extending the set of fireiron compute specifications

So far, Fireiron has only been used to generate efficient matrix-matrix
multiplication kernels using the MatMul and Move specifications. We
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believe that the Fireiron’s general approach applies to a broader set
of computations beyond matrix multiplication kernels. Extending
the set with additional compute specifications, such as supporting
convolutions, point-wise matrix additions, activation functions like
rectified linear unit, or other typical machine learning operations, is
an obvious and beneficial extension to the Fireiron compiler. Gen-
erally, each building block provided in today’s high-performance
libraries, such as cuBLAS or cuDNN, could be defined as a new spec-
ification in Fireiron and optimized similarly to how we developed
optimizations for the MatMul spec.

By extending the set of existing compute specifications, an inter-
esting research question naturally emerges: It is still unclear if and
how the set of existing decompositions would have to be adjusted
or generalized to provide useful optimizations for the new compu-
tation specs. We believe that Fireiron’s tile decomposition, which
maps computations to the parallel compute hierarchy, is generally
applicable because every efficient implementation must make use of
the available hierarchy. We also believe that we can reuse most or
all data-movement related functionality in Fireiron (i.e., the move de-
composition and Move specs) because every high-performance GPU
kernel must efficiently move data through the memory hierarchy.

However, whether the split and epilog decompositions are use-
ful for optimizing other computational specs than MatMul remains to
be seen. Most likely, tile and split are generalizable to decompose
tensors of arbitrary dimensionality. These generalized decompo-
sitions then allow us to specify which dimensions to process in
parallel (tile) and which dimensions are reduction dimensions
(split). Similarly, the epilog decomposition, which is currently
only defined for MatMul specs, is likely generalizable for decompos-
ing other compute specs: Every high-performance implementation
on a GPU, regardless of what operation exactly is implemented,
must compute its results in registers and eventually move those
results back to global memory again - this is the purpose of the
epilog decomposition.

support the optimization of computation graphs In
its current version, Fireiron is only capable of generating code for
a single input spec, e.g., a single matrix multiplication kernel for a
given kernel-level MatMul spec as input. Even if we extend the set
of existing specs, as discussed in the previous paragraph, this fact
remains a limitation because most real-world computations require
performing multiple operations in a sequence (e.g., artificial neural
networks or image processing pipelines). Supporting the expression
and optimization of computation graphs will, therefore, significantly
extend Fireiron’s capability to generate high-performance programs
for computations occurring in domains such as machine learning.
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Assume that we extend the set of available computation specs
with an element-wise matrix addition and element-wise matrix
multiplication (also called Hadamard-Product, its operator is written
as ◦). Supporting the expression of computation graphs in Fireiron LSTM – Long Short-Term

Memory [79]: A Recurrent
Neural Network (RNN)
architecture commonly
used in deep learning

would then allow us to optimize more sophisticated programs such
as a complete LSTM cell [79] expressed as follows:

ft = σg(Wf ∗ xt +Uf ∗ ht−1 + Vf ◦ ct−1 + bf)

Here, x is the input vector, h is the output of the previous iteration,
W,U,V are weight matrices, and b is the bias vector. An LSTM
cell is a regularly used high-level building block in more complex
recurrent neural network architectures.

The optimization of computation graphs like an LSTM cell opens
up the possibility to define and explore inter-operation optimiza-
tions like operator-fusion. For example, instead of computing the
two matrix multiplications (Wf ∗ xt and Uf ∗ ht−1) followed by the
addition using three separate kernels, the whole computation can
be fused into a single kernel. Operator fusion significantly reduces
the amount of data moved to and from the GPU and, therefore,
improves the overall performance.

We will have to extend Fireiron’s set of decompositions with
scheduling primitives similar to Halide’s compute_at and store_at

to support inter-operator optimizations like fusion. These primitives
allow programmers to specify producer-consumer relationships in
the overall computation graph.

Generally, we believe that having implemented Fireiron’s specifi-
cations as RISE expressions, as discussed in the previous paragraphs,
would significantly simplify supporting computation graphs and
their optimization. Since each specification is representable as a RISE
expression, we can express a computation graph by merely using
the standard function composition. ELEVATE’s rewrite rules like the
mapFusion rule can then be used to define strategies implementing
optimizations such as operator fusion.

provide a pre-defined optimization library Fireiron al-
lows us to specify typically applied high-performance optimizations
as concise decomposition strategies. One advantage of Fireiron is
that it allows experts to specify implementations at various gran-
ularities. For example, a performance engineer can use Fireiron to
specify the optimization of a complete matrix multiplication ker-
nel by fully decomposing a kernel-level MatMul spec. Alternatively,
Fireiron also allows the decomposition of smaller parts of a kernel
like data movements between levels of the memory hierarchy by
decomposing the associated Move spec.

We argue that it is possible to reuse decompositions in differ-
ent circumstances, which motivates providing a library of high-
performance decompositions. For example, moving a buffer from
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global memory to shared memory on a GPU with the Maxwell
architecture always has to be implemented in a specific way: For
achieving coalesced global memory accesses, adjacent threads must
load from adjacent memory addresses; to achieve efficient shared
memory stores, the threads have to avoid bank conflicts using
architecture-specific swizzles. Similarly, every hardware architec-
ture poses specific constraints for data movement that must be
satisfied for achieving high performance, regardless of which kind
of computation uses the buffer that is being moved. Assume a per-
formance engineer defines a strategy that moves a buffer from global
memory to shared memory in such a way that loads and stores are
performed efficiently on the Maxwell architecture (e.g., the strategies
we discussed in Section 3.5). If we provide this strategy in a library,
a Fireiron user can reuse this data-movement implementation when
optimizing matrix multiplication or convolution computations with-
out having to optimize the data-movement herself, a complicated
task that may lie outside her expertise.

With the support of computation graphs, even more complex opti-
mizations could be pre-defined by performance engineers. Optimiza-
tions across single operations such as operator fusion or persistent
weight matrices are two popular techniques for optimizing machine
learning sub-graphs that span multiple operations. Operator fusion
fuses the computation of two operations that are typically executed
using two separate kernels into one kernel. Fusion is typically ap-
plied to reduce the kernel-launching overhead and the need to move
data to and from the slow off-chip global memory.

More advanced techniques such as persistent weight matrices
could also be developed and provided as pre-defined Fireiron de-
compositions. In recurrent neural networks, the output of one it-
eration serves as the input of the next iteration while the weight
matrices are reused across iterations. A common optimization for
computing recurrent neural networks is keeping the weight matrices,
whose values do not change across iterations, persistently in lower
memory-hierarchy levels such as shared memory to reduce data
movements. Similar to how we define common optimizations for ma-
trix multiplications as decompositions in Fireiron, one could provide
a whole set of advanced optimization techniques for computation
graphs as a pre-defined library.

automatic optimization exploration Finally, another use-
ful extension to Fireiron would be the application of automated
search techniques to automatically find efficient decompositions
for a given specification or computation graph. Techniques like
sketch-based program synthesis, as used in SwizzleInventor [128],
Evolutionary Algorithms, Deep Reinforcement Learning, or basic
auto-tuning techniques for tuning numerical parameters such as tile
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sizes are applicable at multiple levels of our optimization pipeline.
Related domain-specific compilers, including Halide [141], TVM [29],
and Tensor Comprehension [175], already apply some of these tech-
niques to optimize their computations automatically.

The work on optimizing stencil computations in Lift, which we
discussed in Chapter 4, already applied basic auto-tuning techniques
to tune numerical parameters such as tile sizes. We believe that it
is possible to further automate the exploration process beyond tun-
ing numerical parameters by, for example, letting a reinforcement
learning agent experiment with applying decompositions in dif-
ferent ways while using the generated program’s runtime as the
reward in the learning process. Enabling automated exploration
of high-performance decomposition strategies for Fireiron would
significantly decrease the need for human experts to develop the
strategies in a trial and error process.

6.3.2 Enhancing the ELEVATE Language

In the following, we discuss potential enhancements for ELEVATE.

a type system for strategy languages Currently, we im-
plemented ELEVATE using a shallow embedding in Scala without a
dedicated type system. One of the key aims of our ELEVATE design is
the ability to reason about strategies. All of the basic rewrite rules
we implemented in ELEVATE are easy to prove correct (i.e., all rules
preserve the semantics of the input program, as discussed in [68]).
Combining semantics-preserving rewrite rules to more sophisti-
cated strategies using ELEVATE’s traversals and combinators thus also
always results in a semantics-preserving strategy.

Still, it is hard to reason about the result of applying a strategy to
an arbitrary program due to a missing type system. Furthermore,
it is straightforward to define completely useless strategies. Two
simple examples are the fail strategy and repeat(id). The fail

strategy always fails regardless of the input program, and the repeat

(id) strategy never terminates as it is always possible to apply the
id strategy. Both strategies are semantics-preserving as they do not
change the input program. However, failure and non-termination
are generally undesired properties of strategies in the process of
program optimizations.

Mametjanov, Winter, and Lämmel [101] introduce a type systems
in the domain of term-rewriting systems that allows compilers to
statically check the behavior of a strategy before applying it to a
program. Developing such a type system for ELEVATE would allow
to statically reason about the effect of applying a strategy and
potentially statically rule out the definition or application of useless
strategies like the two discussed examples.
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optimizing strategies : optimizing elevate with elevate

We have shown in Section 5.6.1 that defining complex optimizations
as rewrite strategies quickly leads to the application of thousands
of rewrite steps. In our case studies for optimizing matrix multi-
plications, the time to perform these was not a limiting factor yet.
However, using ELEVATE to optimize more complex computations
like full image-processing pipelines or large neural networks will
likely increase the number of required rewrite steps.

One possibility to reduce the required steps to rewrite a program
is to optimize the optimization strategy itself. Since ELEVATE can be
used to rewrite programs in any programming language, ELEVATE
can also be used to rewrite ELEVATE programs - performing meta
optimizations. For example, assume we apply the following strategy
to a simple RISE program:

(body(id) ‘;‘ body(id))(fun(x,x))

This strategy requires four rewrite steps: 1) traverse to the body
of the function abstraction, 2) apply the id strategy, 3) traverse to
the body again, 4) apply the id strategy again. However, without
changing the strategy’s effect we could also apply the following
strategy which requires one step less:

(body(id ‘;‘ id))(fun(x,x))

Note the similarity to the mapFusion strategy for RISE programs. Here,
we fused the two traversals to the body of a function abstraction.
The following rewrite rule implements this kind of transformation
in ELEVATE:

def bodyFusion: Strategy[Elevate] = e => e match {

case seq(body(f), body(g)) => Success(body(seq(f,g)))

case _ => Failure(bodyFusion) }

Similarly, we can define more simplification rules that reduce the
number of performed rewrite steps:

def idSimplification: Strategy[Elevate] = e => e match {

case seq(id, id) => Success(id)

case lChoice(id,id) => Success(id)

case body(id) => Success(id)

case _ => Failure(idSimplification) }

Applying this rule exhaustively to our original input strategy re-
duces the performed rewrite steps from four to only a single one:

normalize(idSimplification)(body(id) ‘;‘ body(id)) // == id

As soon as the time required to rewrite becomes infeasible due to
requiring too many rewriting steps during program optimization
with ELEVATE, meta-optimizing the strategies themselves might be
a potential solution for making rewriting itself more efficient. This
type of optimization can also be regarded as a kind of compile-time
optimization for ELEVATE.
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6.3.3 Enhancing the Expression and Optimization of Stencils in Lift

Finally, we discuss potential extensions to our high-performance
compilation approach for stencil computations in Lift and to gener-
ating code using Lift and its spiritual successor RISE in general.

adding other back-ends and host-code generation

Both, Lift and RISE, currently are only capable of generating se-
quential C code (optionally annotated with OpenMP pragmas for
parallelization) or parallel OpenCL code. It makes sense to extend
the set of back-ends for Lift or RISE to support a broader range of
possible target architectures. For example, adding a CUDA back-end
would enable targeting NVIDIA GPUs specifically to target CUDA’s
WMMA-API to use Tensor Cores, which is not possible when gen-
erating OpenMP or OpenCL code. A CUDA back-end would also
enable the use of inline PTX assembly to target the lower-level mma.
sync instructions, which expose more fine-grained control over the
Tensor Cores. To target Google’s TPU, we would have to add an XLA
back-end because XLA is currently the only publicly available API
that allows to target these accelerators.

Additionally, instead of only generating kernel code, generating
the host code required to launch those kernels as well would open
up even more opportunities. For example, in cases where a single
kernel does not fully saturate the targeted CPU or GPU, it is beneficial
to run additional independent kernels concurrently on the same
device to make use of the idle hardware resources. When executing
computations graphs like neural networks, multiple operations can
often be computed concurrently because they do not depend on
each other. For example, in CUDA, this is achieved by launching each
kernel using a separate so-called stream. So far, this must be done
manually because neither RISE nor Lift is capable of generating the
required host code.

expressing and optimizing iterative stencils In Chap-
ter 4, we only expressed and optimized single stencil iterations. Typ-
ically, stencil computations are performed iteratively to, for instance,
compute multiple time steps in a physics simulation. Performing
the same stencil computation iteratively enables further potential for
advanced optimizations. Popular techniques for optimizing iterative
stencil computations especially include various versions of tiling to
exploit the temporal locality across stencil iterations. A vast amount
of work exists on different ways to tile iterative stencil computa-
tion, including diamond, hexagonal, skewed and other versions of
overlapped tiling, that aim to improve the performance of applying
multiple time steps.
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Expressing iterative-stencil computations in Lift does not require
to add more algorithmic primitives. As we have shown, a single
stencil iteration is expressible using pad, slide, and map. The most
straightforward way to express multiple stencil iterations is to unroll
them manually:

// a simple 3-pt stencil computation expressed in lift/rise

val stencil = pad(1,1,clamp) |> slide(3,1) |> map(reduce(0,+))

// performing three stencil iterations

input |> stencil |> stencil |> stencil

Another way to express iterative stencil computation is to use Lift’s
iterate primitive that expects a natural number specifying the number
of iterations and the function describing the stencil computation
that is applied to apply to the input. The iterate primitive applies
the given function to the input and uses the computed output as
input for the next iterations. Using iterate, the three stencil iterations
are expressible in Lift as follows:

// performing three stencil iterations

input |> iterate(3,stencil)

Implementing tiling optimizations for iterated stencil computa-
tions requires to rewrite and fuse multiple separate time steps. There
exists a wide variety of multi-dimensional tiling approaches for it-
erative stencils, as we will discuss in Section 7.4. We believe that
again, multi-dimensional tiling for iterative stencil computation is
expressible using simple rewrite rules similar to how we express
overlapped tiling, as discussed in Chapter 4.

6.3.4 Using MLIR as a Unifying Framework

Google has recently introduced the Open Source project MLIR (Multi-
Level Intermediate Representation) [93]. MLIR is part of the LLVM
project and is a framework and toolkit for building compilers. One
of the key features of MLIR is the ability to define custom so-called
dialects. A dialect is essentially an IR implemented in the MLIR
framework and consists of a set of custom operations and types.
MLIR already provides a set of dialects, including a TensorFlow IR,
an XLA IR, a polyhedral-inspired IR, and an LLVM IR. Addition-
ally, MLIR allows compiler developers to define transformations
that translate between dialects to gradually lower computations
expressed in one IR to another IR.

Instead of implementing the intermediate representations and
languages introduced in this thesis (Fireiron, Lift, RISE, and ELE-
VATE), as embedded domain-specific languages in Scala, we believe
that it would be a signifcant improvement to reimplement those
as MLIR dialects. The first distinct advantage is that this enables
the use of the existing MLIR front- and back-ends. For example,
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instead of developing our own TensorFlow front end, which trans-
lates TensorFlow computations into Fireiron specifications, we could
define MLIR transformations that translate computations expressed
in the already existing TensorFlow dialect into our Fireiron dialect.
Similarly, we could then define additional transformations to lower
our Fireiron dialect into RISE and ELEVATE dialects that eventually
are lowered into the existing LLVM dialect. MLIR’s LLVM dialect
can ultimately be compiled to code targeting a wide variety of
hardware accelerators, including CPUs, GPUs, and Google’s TPU.
Essentially, the whole compilation infrastructure shown in Figure 6.4
is implementable within the MLIR framework.

Using MLIR as the unifying underlying infrastructure would also
significantly reduce the effort required for potential users to benefit
from and adapt the concepts introduced in this thesis. For example,
it would be interesting to try to apply an ELEVATE-like approach
towards program optimizations by composing transformations as
rewrites for dialects in MLIR. ELEVATE’s capability of being able to
rewrite arbitrary programming languages (i.e., dialects) is especially
useful in the context of MLIR, where one can expect to find a plethora
of different dialects in the near future. A single principled mecha-
nism to drive the translation between MLIR dialects will be useful.
Our performed case-study shows that ELEVATE is able to deliver
precise control over transformations while providing easy-to-use
high-level abstractions.

Finally, similar to how LLVM significantly influenced the construc-
tion of general-purpose compilers, we believe MLIR can influence
the construction of domain-specific compilers. We already see many
similarities between concepts implemented in MLIR and the work
discussed here. For example, the proposed linalg MLIR dialect [100]
exhibits similarities with our design of Fireiron, especially its ability
to gradually decompose computations to smaller sub-computations,
as we will discuss in the final Chapter 7. Generally, we believe that
making the concepts and ideas discussed in this thesis available by
implementing them as dialects in a shared MLIR infrastructure accel-
erates the ability of a broader audience to achieve high-performance
domain-specific compilation without constructing domain-specific
compilers.
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In this final chapter, we compare our work presented in the pre-
vious chapters with existing related work. Specifically, we discuss
related domain-specific compilers, high-performance code genera-
tion approaches, rewrite-based optimization approaches, and high-
performance frameworks for stencil computations.

We begin with a discussion of various high-performance domain-
specific compilation approaches (Section 7.1) and discuss how they
relate, how they influence, or how they differ compared to the con-
tributions made in this thesis. In Section 7.2, we briefly discuss
approaches for simplifying the development of domain-specific lan-
guages and compilers. In Section 7.3, we introduce approaches to
automating the optimization process and how to potentially ap-
ply those approaches to the compilers described in the previous
chapters. We conclude this chapter with a comparison of existing
stencil-specific frameworks and our contributions made in Chap-
ter 4 (Section 7.4), and a comparison of related rewriting-based
approaches (Section 7.5), where we especially highlight the differ-
ences to our contributions made in Chapter 5.

7.1 high-performance domain-specific compilation

We begin by discussing existing related approaches to achieving
high-performance domain-specific compilation and compare those
to our work introduced in the previous chapters.

7.1.1 Lift and RISE

The contributions made in this thesis, especially in Chapter 4 and
Chapter 5, extensively build upon earlier work on Lift [162] and
RISE [8] – Lift’s spiritual successor. Lift was introduced in 2015 [161]
as a functional, pattern-based approach for achieving performance-
portability on accelerators. Before our work on extending Lift for
expressing domain-specific stencil computations [70] (Chapter 4),
Lift has mainly been used for generating high-performance dense
linear algebra code [150, 152, 162, 166]. Steuwer, Remmelg, and
Dubach [167] describe Lift’s compilation process for generating
high-performance OpenCL code.
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Our work on expressing stencil computations in Lift has shown
that its functional IR is suitable for expressing computations of
various application domains. Lift has since been used for expressing
computations of multiple other domains, including sparse linear
algebra [74, 132], machine learning [103, 104], high-level synthesis
targeting FPGAs [89], acoustics simulations [168], and Fast-Fourier
Transformations [88]. Many of these extensions to Lift use the
pad and slide primitives introduced in Section 4.3.2. Additionally,
Remmelg et al. [151] discuss how to predict the performance of Lift

programs, and Stoltzfus et al. [169] present an extended discussion
about stencil computations in Lift, including expressing advanced
tiling optimizations. Lift has also been used for the parallelization
of legacy code [58].

RISE was introduced in 2017 as the spiritual successor to Lift

and is used in Chapter 5 as the target language to be optimized
by ELEVATE rewrite strategies. RISE introduces a strategy-preserving
compilation approach [8]: The IR contains all relevant information
about low-level code-generation details such as memory locations
and parallelism to alleviate the compiler from making implicit imple-
mentation decisions. Position-dependent arrays in RISE [131] allow
the computation of triangular matrix-vector multiplication and the
avoidance of unnecessary out-of-bound checks for specific stencil
computations.

7.1.2 Schedule-Based Compilation

halide [138–141] is a domain-specific schedule-based compiler
for generating high-performance image-processing pipelines. Halide
has pioneered the development of schedule-based compilers that
separate computation (typically called the algorithm) from its opti-
mization described in a so-called schedule. We already introduced
and compared our work extensively against Halide, especially in
Chapter 1, Chapter 3, and Chapter 5. In the following, we briefly
summarize our findings.

The Fireiron compiler, introduced in Chapter 3, follows Halide’s
schedule-based design but targets the optimization of matrix multi-
plications on NVIDIA GPUs specifically. Optimizing data movements,
which are particularly important for achieving high performance
on GPUs, is challenging in Halide because it treats data movements
as second-class citizens. Fireiron (introduced in Chapter 3) is the
first domain-specific schedule-based compiler that treats data move-
ment as first-class citizens, which allows the optimization of both
computations and data movements using scheduling primitives.

Halide’s IR is -by design- specific to the domain of image process-
ing pipelines. However, being domain-specific restricts its reusability
and forces compiler developers to start from scratch for targeting
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new application domains. In Chapter 4, we introduced a generic
IR for expressing domain-specific computations. We specifically
demonstrated how to extend it for expressing stencil computations,
which are an integral part of image processing pipelines.

In Chapter 5, we demonstrated how to implement scheduling lan-
guages as optimization strategies composed of simple rewrite rules.
In contrast to using a pre-defined scheduling API for expressing
program optimizations like Halide provides, defining composable
rewrite strategies leads to a more flexible, scalable, and extensible
program optimization approach.

tvm [29] is another domain-specific compiler inspired by Halide;
it provides an end-to-end compilation stack for deep learning ap-
plications. TVM contains front-ends for popular machine learning
frameworks, including TensorFlow [2, 3], and PyTorch [126], and
provides back-ends for generating high-performance code targeting
various hardware architectures including CPUs and GPUs.

In Chapter 3, we compared Fireiron against TVM and especially
demonstrated the need for first-class data movement optimizations
in scheduling languages; those are currently missing in the design
of existing schedule based compilers such as Halide and TVM. In
Chapter 5, we conducted an in-depth case study where we demon-
strated how to implement TVM’s scheduling primitives as ELEVATE
strategies targeting RISE programs. By implementing TVM’s schedul-
ing primitives as composable and extensible rewrite strategies, we
showed that it is possible to design similar or even more expres-
sive scheduling primitives (e.g., multi-dimensional tiling) from a
small collection of simple rewrite rules. The performance achieved
by the code optimized with our rewrite optimization strategies is
confirmed to be competitive to code optimized and generated by
TVM.

tiramisu [10] is a schedule-based polyhedral compiler for op-
timizing machine learning, dense- and sparse linear algebra, and
image processing pipelines on different hardware architectures. We
separately compare against polyhedral compilation in Section 7.1.3.
In Section 6.3, we discussed how we could extend Fireiron to support
the expression of more computations; however, data-dependent com-
putations such as sparse linear algebra, as supported by Tiramisu,
lie outside the scope of Fireiron’s design. Tiramisu’s IR is separated
into four distinct layers: Abstract Algorithm, Computation Management,
Data Management, and Communication Management for separating
algorithms, loop-transformations, data layouts, and communication.
In contrast to this separated design, in Chapter 4 and Chapter 5,
we introduced Lift and RISE. These two functional pattern-based
approaches capture all information required for high-performance
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code generation in the same IR, without such separation. This design
enables strategy-preserving code generation [8] in a compiler that does
not need to make implicit optimization choices because all required
information is already present in the IR.

Another key difference to the work discussed in this thesis is
Tiramisu’s capability to target distributed machines. All approaches
introduced in the previous chapters generate single compute kernels
only, and are thus not yet suitable for generating code that runs on
multiple compute nodes in a distributed machine.

graphit [192] is a domain-specific language and compiler de-
veloped by MIT and Adobe. In contrast to the work described in
the previous chapters, GraphIt’s IR and scheduling primitives are
designed to express and optimize graph algorithms. Their high-level
algorithm language enables the expression of edge processing code,
edge traversals, and vertex trackings; the scheduling language ex-
poses a graph iteration space model that enables the composition of
graph-algorithm optimizations. GraphIt (as well as Halide [107] and
TVM) provides an auto-tuner to find high-performance schedules
automatically. As described in Section 6.3, both Fireiron and ELEVATE
could be extended with auto-tuning techniques for enabling the
automatic optimization of programs similar to GraphIt’s approach.

chill [28] was introduced in 2008 before Halide and is a frame-
work for composing traditional loop transformations. It provides a
so-called transformation script for prescribing how to optimize the tar-
get code. CHiLL’s transformation scripts are closely related to today’s
scheduling primitives, and CHiLL can be regarded as a precursor
to today’s popular schedule-based compilers in general. CUDA-
CHiLL [159] is an extension to CHiLL that allows programmers to
target GPUs. Similar to Fireiron’s .move decomposition, CUDA-CHiLL
provides a datacopy primitive that initiates a data movement to a
different level in the memory hierarchy. CUDA CHiLL’s datamovent,
however, relies on fixed built-in strategies to move the data through
the memory hierarchy.

schedule trees [178] are an explicit representation of the
execution order of program statements in the polyhedral model.
Modifying the execution order of a program is expressed by modify-
ing the schedule tree using predefined graph-transformations such
as tile or split.

We separately discuss Polyhedral Compilation in the following sec-
tion, but briefly mention schedule trees here already because of their
similarity to schedule-based compilers, which also allow program-
mers to describe how a program is executed explicitly.
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summary Generally, when comparing existing domain-specific
schedule-based compilers with our approaches to achieving domain-
specific compilation, three significant differences persist with vary-
ing degrees:

• Fireiron’s ability to precisely orchestrate data movements using
high-level decompositions is unmatched compared to existing
scheduling languages.

• By design, the IRs of existing domain-specific compilers are
specific for one or only a few application domains. With Lift,
we demonstrated the possibility to express domain-specific
computations using a generic, pattern-based, functional IR.

• Similarly, the scheduling primitives provided by schedule-
based compilers are inherently specific for the applications
they aim to optimize and hard to extend. With ELEVATE, we
demonstrated how to define domain-specific scheduling lan-
guages as compositions of simple rewrite rules.

7.1.3 Polyhedral Compilation

Polyhedral compilation is a technique for representing and optimiz-
ing programs that contain nested loops and arrays as parametric
polyhedra [51, 97, 189] or Pressburger relations [86, 177]. This math- A comprehensive summary

of polyhedral compilation
and related publications
can be found online at
polyhedral.info [59].

ematical representation of programs enables compilers to perform
combinatorial and geometrical transformations for optimizing the
performance.

ppcg [179] (Polyhedral Parallel Code Generation) is a paral-
lelizing polyhedral compiler that generates CUDA. In Section 4.5.4,
we compared Lift-generated stencil kernels against code paral-
lelized using PPCG. Specifically, PPCG is a source-to-source compiler
that translates annotated C-code into CUDA host and device code.
PPCG compiles loop-nests annotated with pragma scop start/end

into CUDA kernels running on a GPU, and it inserts host code for
data transfers to and from the device into the remaining C code.
The approaches introduced in the previous chapters all focus on the
generation of high-performance device code In contrast to PPCG,
they do not generate nor optimize the host code required to execute
the generated kernels.

diesel [49] is a domain-specific language and compiler for gen-
erating high-performance linear algebra and neural network codes.
In Diesel, computations are expressed as a Directed Acyclic Graph
(DAG), which is compiled to an internal polyhedral IR that allows to
perform optimizations, including the fusion of multiple operations
into a single kernel. As mentioned in Section 6.3, operator-fusion is
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a promising optimization to explore for the compilers introduced
in this thesis. The polyhedral model is particularly suitable for im-
plementing such optimizations because it operates by purely trans-
forming nested loops. Diesel’s fusion approach could be adapted by
expressing the operator-fusion transformations as ELEVATE rewrite
rules that operate on nested RISE primitives. Like Fireiron, Diesel
also generates high-performance CUDA matrix multiplication im-
plementations. However, Diesel has just recently been updated to
support using Tensor Cores on modern NVIDIA architectures [12].

tensor comprehensions [175 , 176] As already discussed in
Section 1.2.1, Tensor Comprehensions (TC) is a domain-specific lan-
guage and compiler for the generation of high-performance machine
learning kernels. Tensor Comprehension’s DSL allows programmers
to specify computations using a tensor notation close to the mathe-
matics of deep learning. The underlying compiler uses a hierarchical
IR that includes features from both Halide as well as the polyhedral
model. TC provides a fully automatic optimization approach that
includes traditional auto-tuning and evolutionary algorithms. In
Section 4.5.2, we briefly explained how we automatically optimize
Lift programs for generating high-performance OpenCL kernels.
TC’s automatic optimization approach is much more sophisticated
and could be adapted for the compilation of Lift or RISE programs.
However, the tools and compilers presented in this thesis, especially
Fireiron and ELEVATE, aim to empower the user to decide how to op-
timize programs, rather than applying optimizations transparently.

7.1.4 Algorithmic Skeletons

Algorithmic Skeletons have been introduced in 1988 [37] and de-
scribe often-recurring patterns in parallel programming. Essentially,
an algorithmic skeleton can be viewed as a higher-order function
used in imperative parallel programming models: A skeleton de-
scribes the overall structure of the computation, and it is parameter-
ized by one or more other functions specifying the problem-specific
computation.

For example, one of the originally proposed skeletons is the divide
& conquer skeleton that describes the well-known partitioning of a
problem into multiple sub-problems that can be solved in parallel.
This particular skeleton expects four functions that describe the
problem-specific instance: indivisible, f, split, and join. Here, indivisible
is a predicate determining whether the current element can be
further divided; f is the computation performed in parallel on the
indivisible elements; split specifies how to divide the current element,
and join is its inverse.
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Algorithmic skeletons are often categorized as either data-parallel,
i.e., performing the same task on different data, or task-parallel, i.e.,
performing multiple different tasks in parallel. In the following, we
briefly introduce libraries based on algorithmic skeletons aiming to
achieve high-performance on different hardware architectures.

skelcl [165] is an OpenCL-based skeleton library for high-level
GPU programming that provides four basic skeletons: map, zip, re-
duce, and scan. For each of these skeletons, SkelCL provides an
efficient parameterizable OpenCL implementation targeting GPUs.
As we have shown in the previous technical chapters, there is often
no one-size-fits-all implementation that achieves high performance
across different hardware architectures. However, SkelCL, like other
skeleton libraries, relies on a fixed implementation per skeleton
designed to achieve high-performance on the targeted architecture
but fails to achieve similar performance on different architectures.
Another restriction of the SkelCL approach is the missing support
for nesting skeletons. In SkelCL, every skeleton is compiled to a
separate OpenCL kernel. Due to being designed as actual functional
programming languages, Lift and RISE allow the expression of sim-
ilar computations (they support the same skeletons/higher-order
functions except scan), but allow arbitrary nestings and compositions
of primitives.

Steuwer and Gorlatch [163] describe an extension to SkelCL for
supporting stencil computations by introducing a new stencil and
mapOverlap skeleton. In Section 4.3.2, we described how a stencil
computation (and therefore the stencil algorithm skeleton) is de-
composable into fundamental and generic building blocks. This
approach achieves more flexibility by using domain-agnostic primi-
tives for expressing domain-specific computations.

Unlike the compilers introduced in this thesis, SkelCL is capable
of targeting multi-GPU systems.

musket [155 , 190] is a domain-specific language based on al-
gorithmic skeletons for targeting distributed systems. Musket is
embedded in C++ and provides popular data-parallel skeletons,
including map, fold, mapFold, or zip. Here, mapFold is a special-case
skeleton for expressing the composition of map and fold. A key differ-
ence to the approaches discussed in the previous chapter is Musket’s
ability to target distributed systems by generating MPI code and its
Eclipse IDE integration for simplified development.

muesli [90] is another typical skeleton library for high-level
programming of heterogeneous clusters that contain multi-core
CPUs, GPUs, or Xeon Phi co-processors. MUESLI provides a high-
level interface to the programmers and encapsulates the low-level
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skeleton implementations in library functions. Since its introduction,
it has been extended to support both data-parallel and task-parallel
skeletons [91], including skeletons for sparse computations [33].

accelerate [23] is a high-level domain-specific language em-
bedded in Haskell for generating high-performance CUDA code.
Accelerate exposes typical data-parallel skeletons as higher-order
functions in Haskell that can be parameterized with scalar code to
instantiate the CUDA templates designed for each skeleton. Due to
being embedded in the pure functional language Haskell , Accelerate
has an interesting compilation workflow that differs from traditional
skeleton approaches. The surface language facing the Accelerate
programmer is implemented using type families and GADT’s (Gen-
eralized Algebraic Data Types) and is eventually compiled into a
nameless de Bruijn representation [41].

mdh [144 , 145] is another promising skeleton-based approach
that exposes only a single pattern (or skeleton) to the user, a so-
called multi-dimensional homomorphism (MDH). MDH is based on the
Bird-Meertens Formalism [13, 14, 102] and generalizes their one-
dimensional list homomorphisms to work on multi-dimensional arrays
(MDA). The multi-dimensional homomorphism pattern (combined
with a specific view pre-processing for gathering required data el-
ements) is capable of expressing the typically used data-parallel
skeletons map and reduce. Additionally, more complicated computa-
tions such as matrix multiplications, generalized tensor contractions,
or stencil computations are expressible using MDH too. Following
the algorithmic skeleton approach, MDH is implemented using a
fixed code template that, however, exposes several tunable parame-
ters that can be tuned at runtime once the skeleton is instantiated
for the specific problem to compute.

other algorithmic skeleton libraries . Similar to the
previously discussed skeleton-based approaches, there exist several
other skeleton libraries that aim at achieving high performance
on various parallel architectures. They differ in the programming
languages they support or are embedded in, the skeletons they
provide, and the architectures they support. Notable examples of
further skeleton libraries are SkePU [50], FastFlow [4].

7.1.5 Other High-Performance Code Generators and Libraries

In the following, we discuss other related compilers targeting high-
performance code generation that are neither schedule-based nor
based on the polyhedral model. Additionally, we analyze related
libraries for achieving high performance on different architectures.
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futhark [77] is a functional data-parallel array language that
compiles to high-performance OpenCL code. Futhark is based on list
homomorphisms pioneered by Bird and Meertens [13]. Like RISE and
Lift, it provides built-in primitives (second-order array combinators)
like map or reduce for expressing parallel computations. Futhark’s
compilation is based on rewrite rules for exploiting parallelism by
flattening nested data structures to optimize the locality of reference.
Generally, Futhark’s compilation follows a built-in strategy, e.g.,
based on the Incremental Flattening algorithm [78], that could also be
implemented using ELEVATE. A key difference to our work is the ex-
pression of stencil computation, which relies on unsafe explicit array
indices (e.g., #[unsafe] input[i-1,j+1]) instead of using primitives
like pad or slide. Futhark’s approach allows programmers to acciden-
tally perform out-of-bounds memory accesses, which are prevented
by design using our functional and pattern-based approach.

nova [38] is a functional language and compiler targeting multi-
core CPUs and GPUs. NOVA is statically typed, polymorphic, and
similar to Lift and RISE, provides a set of well-known higher-order
functions such as map, reduce, or scan, for expressing parallelism.
Another similarity to RISE and Lift is the support of nested data-
structures and nested parallelism. NOVA’s compiler follows a more
traditional pass-style optimization pipeline design, and it applies
optimizations such as inlining and common subexpression elimination.

The key difference to the work introduced in this thesis is NOVA’s
fixed compilation strategies for higher-order primitives. For example,
the scan operation is always computed in three steps: 1) a partial
reduction, an intermediate scan, and a third step to compute the final
result. In Fireiron, decompositions allow programmers to specify
precisely how an operation shall be computed. In Lift and RISE,
low-level primitives introduced by rewrite rules (potentially using
ELEVATE) allow programmers to specify how computations shall be
parallelized.

spiral [122 , 137] and fftw [53] are two automatic high-
performance approaches in the domain of digital signal processing
(DSP), which includes Fast-Fourier Transformations (FFT). Like Lift

and RISE, Spiral attempts to achieve performance portability by ex-
pressing computations in an IR (the so-called operator language) that
is optimized using semantics-preserving rewrite rules. In an auto-
mated search process, Spiral generates efficient DSP code targeting
hardware devices ranging from mobile devices to supercomputers.

FFTW is a C subroutine library for computing the discrete Fourier
Transform. FFTW applies an automated optimization process in
which an executor creates a so-called plan. It describes how the
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algorithm is executed by combining composable blocks of C code
(codelets) for minimizing the runtime on the targeted hardware.

In contrast to the approaches in this thesis, both Spiral and FFTW
are specific to the domain of digital signal processing.

cutlass [116] is a CUDA template library developed by NVIDIA,
which provides high-performance matrix multiplication implementa-
tions. Like Fireiron, CUTLASS decomposes matrix multiplication into
reusable sub-problems and exposes tunable parts (such as tile sizes)
as composable C++ templates. In contrast to Fireiron, the strategies
implemented in CUTLASS are pre-defined. The user has only limited
control over how exactly the algorithm shall be decomposed and
executed on the GPU.

CUTLASS supports Tensor Cores and a wide variety of different
data types beyond what is supported in the current implementation
of Fireiron. Huang, Yu, and Geijn [80] describe an implementation
of the high-performance Strassen algorithm for computing matrix
multiplications in CUTLASS.

traditional high-performance libraries Every hard-
ware vendor typically provides a collection of high-performance
libraries that enable users to achieve high performance for common
computational building blocks. Those libraries contain manually
tuned algorithm implementations written in low-level machine as-
sembly for the targeted hardware architecture. For example, NVIDIA
provides cuBLAS that contains high-performance implementations
for common dense linear algebra building blocks such as matrix
multiplication, or cuDNN, a high-performance library for machine
learning computations. Similarly, Intel provides the Math Kernel
Library (MKL [82]), and AMD provides a collection of optimized CPU
libraries (AMD Optimizing CPU Libraries (AOCL) [1]).

7.2 building domain-specific languages and compilers

In this section, we discuss related approaches for constructing
domain-specific languages and compilers.

mlir [93] (Multi-Layer Intermediate Representation) is a novel
approach for building reusable and extensible compilers recently
introduced by Google. We already extensively discussed MLIR in
Section 1.2.1 and Section 6.3.4, and we only briefly summarize the
discussion here. MLIR allows compiler developers to define domain-
specific IRs as so-called MLIR dialects that can interact (hence, multi-
level) with other existing dialects. Declarative rewrite rules encode
optimizations and are used to transform dialects.
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Especially MLIR’s linalg dialect [100] is closely related to our work
on Fireiron because it allows programmers to strategically decom-
pose linear algebra computations, such as matrix multiplications,
into tiled smaller versions of the original problem. Bondhugula [17]
presents an extensive case study about optimizing matrix multiplica-
tions targeting CPUs in MLIR. The optimizations applied are similar
to those discussed and applied in our case study (Section 5.6) on
optimizing RISE matrix multiplication expression with ELEVATE.

The work described in this thesis has been conducted before the
introduction of MLIR. In Section 6.3.4, we already highlighted the
potential benefits of reimplementing our approaches in MLIR to
use it as a common compiler infrastructure. Lücke, Steuwer, and
Smith [99] describe the implementation of a restricted version of the
RISE IR and compilation approach in MLIR. More recently, Gysi et al.
[64] describe the design and implementation of a stencil-specific
dialect and its optimization in MLIR. This work is closely related to
our approach to expressing and optimizing stencil computations in
Lift as described in Chapter 4.

anydsl [94] is a programming system that generally targets a
similar goal as described in this thesis: Achieving high performance
on parallel hardware without the need to construct domain-specific
compilers. AnyDSL heavily relies on partial evaluation [55, 56], a
technique for evaluating programs in two stages, leading to program
optimization by specialization: In the first stage, the program is
evaluated on its static inputs (e.g., values for variables known at
compile-time are directly injected in the program). The first stage
produces a residuum that is fully evaluated on the remaining inputs
in the second stage. Partial Evaluation is also closely related to meta-
programming (e.g., Template Meta Programming (TMP) in C++ or
Scala Lightweight Modular Staging [156, 157] (LMS)), or the shallow
embedding of domain-specific languages [81].

AnyDSL is built upon Impala [105], a general-purpose functional
language that essentially acts as syntactic sugar for AnyDSL’s CPS-
based (Continuation-Passing Style [154, 171]) IR Thorin [95]. Relying
on a partially-evaluable language (Impala) allows a programmer to
implement desired functionality as an Impala library, rather than
defining a new DSL and an associated domain-specific compiler. The
advantage of this approach is that the library functions are evaluable
in the first partial-evaluation stage, which is similar but more pow-
erful than using compiler pragmas where code is simply inlined but
not necessarily evaluated. For example, AnyDSL provides so-called
generators, i.e., functions known to the Impala compiler, such as
parallel or vectorize that a programmer can use to annotate an
Impala program. These generators are closely related to the ELEVATE
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parallel and vectorize strategies introduced in Section 5.5.1 that
rewrite RISE programs into parallel versions.

In AnyDSL, the programmer generally decides which functions
are partially evaluated using different annotations. The authors also
demonstrate the implementation of various DSLs using AnyDSL,
including a Halide-like DSL for image processing. Özkan et al. [124]
extend AnyDSL for targeting FPGAs.

Optimizing programs by using partial evaluation in AnyDSL or
by using rewrite strategies as introduced in this thesis are two
similar approaches aiming to achieve the same goal by leveraging
fundamentally different techniques.

delite [170] is a general-purpose programming language em-
bedded in Scala that aims at simplifying the process of DSL de-
velopment by providing parallel patterns, optimizations, and code
generators. Programs written in Delite are automatically optimized
and compiled to parallel C++, OpenCL, or CUDA programs and
can simultaneously run on CPUs and GPUs. Delite’s parallel pat-
terns largely overlap with the patterns available in Lift and RISE, or
languages like Futhark or NOVA. Delite automatically performs
generic optimizations like Dead Code Elimination or Common
Subexpression Elimination and encodes domain-specific optimiza-
tions as rewrite rules similar to Lift and RISE.

The programmer’s control over Delite’s optimization approach
is limited. One can programmatically disable specific pre-defined
generic optimizations (e.g., Dead Code Elimination) and can de-
fine custom rewrite rules. The rewrite rule application is only con-
trollable by implementing a fixed interface consisting of Traversals
and Transformers. With ELEVATE, we formalized and generalized the
concepts of transformers (i.e., combinators, see Section 5.4.4) and
traversals (see Section 5.4.5). In contrast to Delite, our approach
offers unlimited control over the rewrite process to the programmer.

spoofax [85] is a platform for developing DSLs. Spoofax origi-
nates from ASF+SDF [21] (see Section 7.5) and incorporates multiple
tools for simplifying the development of DSLs, associated domain-
specific compilers, and even IDE integrations. For example, one of
the included tools is Stratego [184], which has significantly inspired
the design of ELEVATE, and which will be discussed in more detail
in Section 7.5. With Spoofax, compiler developers still have to con-
struct a new domain-specific compiler from scratch for every new
domain-specific language. However, Spoofax provides a reusable
set of common tools for simplifying this task. In this thesis, we
have shown a generic compiler IR and extensible optimization strate-
gies that can be reused for achieving domain-specific compilation
without constructing new compilers for every new language.
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7.3 automatic program optimization

Besides using basic auto-tuning for optimizing Lift programs as
described in Section 4.5.2, none of the approaches introduced in this
thesis uses techniques for automatically achieving high performance
on parallel hardware. Nevertheless, as discussed in Section 6.3.1, our
approaches are amenable for extending and applying automated
search and tuning techniques for generating high-performance pro-
grams. In the following, we briefly discuss such related approaches
towards automatically optimizing programs.

opentuner [6] and atf [143] OpenTuner is an extensible
framework for program auto-tuning. It enables the description of
search spaces and provides an ensemble of search techniques that
work together to find optimal points in the search space with re-
spect to a user-provided cost function. The Auto-Tuning Framework
(ATF) builds on top of OpenTuner and enables the expression of
inter-parameter dependencies in the search space. Expressing de-
pendencies between tuning parameters is particularly useful for
tuning OpenCL or CUDA programs. Here, the number of threads
in a block (one tunable parameter) must evenly divide the overall
number of threads launched (another tunable parameter). We used
ATF to tune thread and block sizes as well as tile sizes and the PPCG
code generation in the evaluation of stencil computations expressed
in Lift, as discussed in Section 4.5.2.

There exists a wide variety of other classical auto-tuning ap-
proaches, including ATLAS [188] for tuning linear algebra applica-
tions, HyperMapper [16] for design space exploration in 3D scene
understanding, or CLTune [121], a generic auto-tuner for OpenCL
kernels.

petabricks [108] and tangram [26] Petabricks is a paral-
lel language and compiler that provides algorithmic choice (i.e.,
how an algorithm is implemented) as a first-class concept available
to the user. In Petabricks, a user informs the underlying compiler
about different implementation choices for a given algorithm by
implementing an interface consisting of transforms and rules. Here,
transforms describe specific algorithms, and rules describe various
implementation choices. At compile time, the Petabricks compiler
constructs a choice-dependency graph and explores various imple-
mentation choices automatically. Additionally, it tunes numerical
parameters such as block sizes or user-specified tuning parameters.

Tangram follows a similar approach compared to Petabricks and
enables the user to specify so-called codelets. A codelet represents a
snippet of code that can have several semantics-preserving imple-
mentations for the Tangram compiler to explore at compile time.
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Additionally, codelets can contain tunable parameters that allow
architecture-specific parameterization, such as tile sizes that need to
be adjusted for targeting different architectures.

In contrast to Petabricks and Trangram, our high-performance
compilation approach allows programmers to derive optimized im-
plementations by applying rewrite rules instead of replacing unopti-
mized code with user-defined high-performance implementations.

taso [83] (Tensor Algebra SuperOptimizer) is a DNN computa-
tion graph optimizer for automatically generating graph substitu-
tions. TASO expects a set of machine learning operators as input
(e.g., matmul, conv, or transpose) and automatically generates graph
substitutions for optimizing machine learning computations graphs.
By enumerating all possible compositions of operators up to a fixed
depth and comparing the computed output using random input
values, TASO generates potential graph substitution candidates. The
found candidates are verified with respect to the operator’s prop-
erties. Verified substitutions are used for optimizing real-world
machine learning computation graphs such as ResNet-50 [75].

TASO’s approach could be adapted to work on Lift (or RISE)
primitives instead of machine learning operators by synthesizing
all possible rewrite rules for sub-expressions of a fixed length. The
well-defined semantics of Lift and RISE primitives are similar to
the defined properties for the machine learning operators used by
TASO. In addition, the intentionally small number of existing primi-
tives roughly matches the number of supported machine learning
operators.

swizzle inventor [128] is a sketch-based program-synthesis
approach to optimizing data movements in GPU kernels. Swizzle
Inventor allows programmers to develop CUDA-style GPU kernels
in the Racket programming language. Here, a kernel is allowed
to have unspecified parts; for example, the index expression for
accessing elements of an array might be left unspecified. A kernel is
accompanied by a sequential program acting as a specification that
describes how to compute a correct output matrix.

Swizzle Inventor automatically synthesizes program fragments for
the unspecified parts of the kernel such that the computed output
agrees with the output of the specification while optimizing the
kernel’s execution time. Swizzle Inventor’s optimization approach
is orthogonal to the approaches described in this thesis. However,
sketch-based program synthesis, and Swizzle Inventor specifically,
are directly applicable to, for example, synthesize high-performance
swizzle expression in Fireiron decompositions.
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automatically generating efficient schedules Un-
like Fireiron, many schedule-based compilers often provide or are
extended with automatic approaches for finding efficient sched-
ules. For example, both TVM [30] and Halide [107] provide such
functionality to liberate experts from developing high-performance
schedules. Halide’s auto-scheduling approach relies heavily on the
bound inference analysis already present in the original Halide com-
piler [140]. After initial pre-processing, the auto-scheduling algo-
rithm groups and tiles computations specified in the input program
by enumerating and evaluating potential merging opportunities.

TVM’s auto-scheduling approach (AutoTVM) rather relies on ma-
chine learning techniques. A statistical cost model estimates the cost
of low-level TVM programs, and an exploration module produces
new schedule candidates to evaluate.

Both approaches, algorithmic and machine-learning-based auto-
scheduling, are similarly applicable for generating high-performance
Fireiron decompositions because the scheduling languages of those
compilers follow a similar design.

7.4 high-level abstractions for stencil computations

and high-performance stencil optimizations

In the following, we compare our work on stencil computations
presented in Chapter 4 against existing domain-specific frameworks
for expressing and optimizing stencil computations.

optimizations for parallel stencil computations Be-
fore discussing specific high-performance stencil frameworks, we
briefly discuss conventional optimization techniques typically ap-
plied for optimizing the parallel performance of stencil computations
on different hardware architectures.

One essential optimization for improving the performance by
exploiting locality is tiling. For example, overlapped tiling [62] de-
scribes a tiling scheme in which tiles overlap according to the stencil
shape. In Section 4.4.1, we have shown how to encode this optimiza-
tion as a rewrite rule in Lift. There exists a wide variety of different
tiling schemes [194] suitable for particular stencil shapes or hard-
ware architectures that especially improve performance for iterative
stencil computations. The polyhedral model discussed earlier is
especially suitable for expressing different tiling schemes. Its mathe-
matical polyhedron representation of loops allows simple transfor-
mations to perform computations using tiling schemes, including
overlapped-tiling [62], diamond-tiling, parallelogram-tiling [195],
split-tiling using trapezoidal tiles [60], or flextended tiles [193]. Stoltz-
fus et al. [169] extend the work on optimizing stencil computations
described in Chapter 4 and introduce how to express 2.5D tiling, a
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tiling technique particularly suitable for 3D stencils, as rewrite rules
in Lift.

Additionally, there exists a large body of work on optimizing sten-
cil computations for particular hardware architectures. Rawat et al.
[146, 147, 149] describe optimizations for targeting GPUs specifically.
GPU-specific stencil optimizations include approaches for minimiz-
ing register usage [148] or reducing global memory access [120].
Similarly, optimizations for stencil computations have been devel-
oped for targeting other architectures, including FPGAs [45, 185],
POWER8 [191], heterogeneous hybrid CPU-GPU architectures [63],
or multi-core clusters [47].

polymage [108] is a domain-specific language and compiler
for image processing pipelines. Users of PolyMage express image
processing pipelines, i.e., a graph of connected operations that typi-
cally include various stencil computations, in a high-level language.
The underlying compiler aims to generate high-performance code
targeting CPUs automatically. The design of PolyMage’s DSL is
inspired by Halide and is inherently domain-specific. With our ex-
tensions to the functional Lift IR, we showed how to express similar
domain-specific stencil computations in a generic IR.

PolyMage’s compilation process relies heavily on polyhedral com-
pilation techniques for optimizing the image processing pipeline
performance. The compiler applies optimizations, including over-
lapped tiling, as discussed in Section 4.4.1, but it covers a broader
selection of stencil-specific optimizations than we implemented as
rewrite rules in our case study of supporting stencils in Lift. Exam-
ples for such optimizations are parallelogram or split tiling schemes.

pastha [96] is a parallel Haskell library for stencil computations.
PASTHA defines a stencil computation as a 5-tuple containing the
dimensions and numbers of input matrices, their initial values, a
tuple consisting of stencil shape, a function describing the computa-
tion per iteration, and a convergence condition for terminating the
time-iterated computation.

In contrast to our way of expressing stencil computations in
the functional Lift IR, PASTHA provides a domain-specific stencil
primitive that only allows the definition of two-dimensional stencil
computations. However, PASTHA can be used for both Jacobi-type
stencils (neighboring values for the current iteration are taken from
the previous iteration), and Gauss-Seidel-type stencils (neighboring
values for the current iteration are taken from the current iteration).
So far, we only used Lift for optimizing the more often used Jacobi-
type stencils.
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patus [31 , 32] (Parallel AutoTUned Stencils) is a code genera-
tion and auto-tuning framework for stencil computations targeting
CPUs and GPUs. Patus provides a high-level C-like domain-specific
language for specifying stencil computations. Additionally, Patus
provides a second small DSL for specifying parallelization strate-
gies. Unlike the rewrite-based strategy languages like ELEVATE, Patus’
strategy language is also a small C-like language. It contains spe-
cific extensions for describing how and when individual results in a
loop-nest are computed, similar to schedule trees used in polyhedral
compilation. The mapping of computation and data to the parallel
hardware is implicitly defined in Patus. However, in Chapter 3, we
specifically argued for making all mapping decisions, including data
movements, explicit in a scheduling language.

pochoir [174] is a domain-specific language and compiler em-
bedded in C++ for expressing generic multi-dimensional stencil
computations. Pochoir targets multicore processors by generating
high-performance Cilk code, Intel’s C++ language extension for
fork-join based code parallelization. The Pochoir compiler, written
in Haskell, applies sophisticated domain-specific transformations
such as computing stencils using a cache-oblivious algorithm based
on a trapezoidal decomposition [54]. Pochoir is an excellent example of
a typical domain-specific compiler that leverages domain-specific
knowledge by applying specialized compilation strategies to achieve
high performance. With the contributions made in this thesis, we
have shown that it is possible to design similar high-performance
domain-specific compilation approaches without requiring domain-
specific solutions.

summary Similar to PASTHA’s stencil function, there exist many
frameworks for high-level stencil programming that provide a re-
stricted domain-specific stencil construct. Other frameworks fol-
lowing the same approach are, for example, SkelCL [164] (provid-
ing a MapOverlap and a Stencil skeleton), HLSF [48] (providing a
makeStencil function), or SkePU [50] (using MapOverlap).

Another popular approach for describing stencil computations
is to use explicit indices for describing the neighborhood accesses
defined by the stencil shape. Using explicit indices leads to potential
out-of-bounds accesses that must be dealt with, for example, using
unsafe annotations as used by Futhark [77] or by complex shape-
inference algorithms as used in Halide [140].

The advantage of our approach is that by decomposing stencil
computations in three fundamental building blocks that each can
be expressed with a simple, functional primitive, we neither have to
introduce domain-specific stencil primitives nor need to deal with
potentially unsafe index expressions.
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7.5 rewriting in compilers and strategy languages

Rewrite rules and rewriting strategies have long been used to build
compilers. For example, the Glasgow Haskell Compiler [127] uses
rewrite rules as a practical way to optimize Haskell programs. Other
areas include building interpreters [46], instruction selection [22] or
constant propagation [123].

In the following, we briefly introduce rewriting approaches closely
related to the work in this thesis. Lift and MLIR have already
been discussed earlier and will not be repeated in detail below.
Lift [70, 162, 167] showed how to use rewrite rules to generate
high-performance code targeting accelerators. Google recently intro-
duced MLIR [93] with declarative rewrite rules for specifying dialect
transformations in optimizing domain-specific compilers.

Visser [180, 183] and Kirchner [87] provide surveys covering term
rewriting, strategy languages and their application domains. Tactic
languages, including [42] and [52], are related to strategy languages
for rewriting systems but are designed for specifying proofs in
theorem provers.

Generally, the idea of program optimization via rewrite rules
reaches as far back as the introduction of functional programming
languages. For example, in his 1978 Turing Lecture, John Backus in-
troduced the concept of an algebra of programs [9] in which programs
are computed by applying simple algebraic rules to a specification
describing the computation to perform. The same idea is further
developed in the Bird-Meertens Formalism [13, 14, 102], which rep-
resents one concrete approach for computing programs according to
algebraic rules.

In the following, we mainly focus on approaches for controlling
the application of rewrite rules by using strategy languages. These
are especially related to our work on Lift and ELEVATE, as discussed
in Chapter 4 and Chapter 5.

stratego [181 , 184] significantly inspired the design of ELEVATE,
our language for expressing optimizations as rewriting strategies,
as presented in Chapter 5. We directly adopted parts of ELEVATE’s
core design from Stratego. This includes the core combinators such
as seq and lChoice (Section 5.4.4), one-level traversals [98] such as
one and all (Section 5.4.5), as well as whole tree traversals such as
topDown (Section 5.4.7).

In contrast to Stratego, in ELEVATE, we do not model strategies as
functions from programs to programs, but rather as functions from
programs to an applicative error monad RewriteResult for explic-
itly encoding success and failure of strategy applications. Stratego
differentiates between rewrite rules and strategies (ELEVATE does
not), and Stratego’s rewrite rules are further decomposed into three
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parts (local variables, matching conditions, application) for express-
ing contexts and conditional rules. In ELEVATE, we achieve this us-
ing precise location descriptions and strategy predicates. ELEVATE’s
domain-specific traversal strategies relate to Stratego’s implicitly
defined congruence operators, which allow to traverse children of
user-defined terms.

Finally, Visser, Benaissa, and Tolmach [184] describe how to build
program optimizers using rewriting strategies; however, on a sig-
nificantly smaller scale, not focusing on high-performance code
generation. With ELEVATE, we have shown how to use and extend
the techniques developed in Stratego for the optimization of pro-
grams allowing to achieve high performance that competes with
state-of-the-art optimizing compilers.

maude [34 , 35] is a high-level language for declarative pro-
gramming in rewriting logic. Maude defines two kinds of rewrite
rules: equations and rules, which are applied using fixed but different
traversal strategies. Maude itself does not allow programmers to
define strategies composed of rewrite rules nor to define to alter
or define new traversal strategies. Instead, strategies for applying
rewrite rules are made internal to Maude’s implementation and can
be changed using reflection [36].

porgy [5 , 129 , 130] is a visual and interactive graph rewriting
system to apply graph transformations encoded as rewrite rules
using strategies. PORGY defines two core concepts: port graphs for
encoding different graphs with nodes containing explicitly labeled
connection points per edge (called ports) and a port graph rewriting
relation for encoding rewrite rules on port graphs. PORGY’s port
graphs could be used for rewriting ASTs similar to the rewriting
performed in ELEVATE. However, their main application domains are
biochemical networks and interaction nets. Similar to ELEVATE and
Stratego, PORGY provides basic combinators for composing rewrite
rules, including sequential composition and basic strategies such as
id and fail. Additionally, PORGY provides probabilistic combinators
that non-deterministically pick from a given set of strategies with
different probabilities. Such combinators do not exist in ELEVATE but
are frequently used in PORGY because they are particularly suited
for biochemical models.

asf+sdf [21 , 44] is a meta-environment for the development
of interactive environments for programming languages. ASF+SDF
defines two formalisms: the Algebraic Specific Formalism that provides
a notation for specifying programming languages, and the Syntax
Definition Formalism that allows the concrete and abstract language
syntax specification. ASF+SDF provides term-rewriting functionality
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and was one of the first frameworks to provide a limited set of
traversal functions for controlling the application of rewrite rules.
ELEVATE’s traversal functionality exposes more fine-grained control to
the user as required for achieving high-performance domain-specific
compilation.

elan [18] is a framework for expressing a logic using syntax
and inference rules and relies on rewriting guided by strategies. In
contrast to ELEVATE, the application of a rewrite rule leads to multiple
results (e.g., if a rule is applicable at multiple locations of a term).
Returning the empty set after applying a rewrite rule or strategy is
considered a failure. In ELEVATE, we model the success and failure of
strategy applications explicitly using the RewriteResult monad.

ELAN allows a restricted definition of strategies for specifying
where a rule is applied, which differentiates between two levels. The
first level consists of basic regular expressions based on a fixed rule
alphabet and the second level that allows to apply labeled rules
using a fixed traversal. In contrast, ELEVATE allows users to freely
define their own strategies, including advanced abstractions for
describing precise locations in a program.

tampr [19 , 20] is an automatic rewrite-based transformation sys-
tem developed in the seventies to optimize numerical computations.
TAMPR enables programmers to define syntax-based rewrite rules
and provides a simple control language for controlling the application
of rewrite rules. This language consists of a small set of control struc-
tures that, for example, apply a given set of rules exhaustively or in
another case at most one rule to any program fragment. In contrast
to traditional term rewriting systems that often exhaustively apply
a given set of rewrite rules to normalize (also known as canonicalize)
terms, TAMPR uses sequences of canonical forms. This is similar to
our approach of optimizing RISE matrix multiplication expressions
with ELEVATE. We also rely on and apply multiple normal-forms such
as DFNF or βη-normal-form, as discussed in Section 5.4.8.
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In this thesis, we introduced a novel approach to achieving

High-Performance Domain-Specific Compilation
without

Domain-Specific Compilers.

Our approach achieves the benefits of domain-specific compilation
by expressing both domain-specific computations and their opti-
mizations as compositions of reusable and generic building blocks
instead of constructing a domain-specific compiler from scratch.
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