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FIREIRON: A SCHEDULING LANGUAGE FOR
HIGH-PERFORMANCE LINEAR ALGEBRA ON GPUS
BASTIAN HAGEDORN | SAM ELLIOTT | HENRIK BARTHELS | RAS BODIK | VINOD GROVER

  1 ��global�� void MatMul(const ��oat A[M * K], const ��oat B[K * N], ��oat C[M * N]) {    
  2 
  3   ��shared�� ��oat ASH[128][8], BSH[8][128];
  4   ��oat ARF[8][1], BRF[1][8], CRF[8][8];
  5 
  6   iBlock �� 128 * blockIdx.x;
  7     jBlock �� 128 * blockIdx.y;
  8         
  9     CRF �� 0;
 10     
 11     for (k �� 0; k < K / 8; k��) {
 12     
 13       GlbToSh(A �� ASH (8�128), start at (iBlock, jBlock))
 14       GlbToSh(B �� BSH (128�8), start at (iBlock, jBlock))
 15       ��syncthreads(); 
 16           
 17       iWarp �� iBlock + warpIdx.x * 64;
 18         jWarp �� jBlock + warpIdx.y * 32;
 19               
 20           iThread �� iWarp + threadIdx.x * 8;
 21             jThread �� jWarp + threadIdx.y * 8
 22                     
 23               for (kk �� 0; kk < 8; kk��)
 24                       
 25                 ShToPvt(ASH �� ARF (8�1), start at (iThread,jThread))
 26                 ShToPvt(BSH �� BRF (1�8), start at (iThread,jThread))
 27                       
 28                 for (i �� 0; i < 8; i ��)
 29                   for (j �� 0; j < 8; j��)
 30                             
 31                     CRF[i][j] += ARF[i][0] * BRF[0][j];
 32                     
 33                   endfor
 34                 endfor
 35 
 36              endfor
 37              
 38 
 39      endfor  
 40 
 41      PvtToGlb(CRF �� C (128�128), start at iBlock, jBlock)
 42 
 43 } �� end kernel
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EXPLOITING HIERARCHICAL STRUCTURE
IN HIGH-PERFORMANCE LINEAR ALGEBRA GPU IMPLEMENTATIONS

01

Most high-performance kernels for GPUs are written in a hierarchical style. The original problem to be computed is decomposable into 
smaller sub-problems of the same kind. These sub-problems are then assigned to and computed by the different levels of the compute 
hierarchy. The figure below visualizes this observation using a simple matrix multiplication kernel. Step by step, the matrix multiplication 
is decomposed into a hierarchy of tiles and data is transferred to lower levels of the memory hierarchy until eventually every thread com-
putes a single FMA instruction. Here, FMA can be viewed as a matrix multiplication of matrices which only contain a single element.

FIREIRON: A SCHEDULING LANGUAGE
EXPRESS COMPLEX IMPLEMENTATIONS AS COMPOSITIONS OF SIMPLE PRIMITIVES

02

Fireiron introduces two main concepts: Specifications and Decompositions. A Specification (spec) is a data-structure describing the com-
putation to implement. A spec contains enough information such that a programmer would be able to manually write an implementation. 
This especially entails that a spec keeps track of the shapes, locations and storage layouts of its input and output tensors, as well as which 
level of the compute hierarchy (i.e., Kernel, Block, Warp or Thread) is responsible for computing this operation.
A Decomposition describes how to (partially) implement a given spec. More specifically, a decomposition is a function Spec → Spec which, 
given a spec, returns a new spec that represents the smaller decomposed sub-problem. Fireiron provides two main decompositions, 
tile and load, which allow implementations to use the compute and memory hierarchy of a GPU.

DECOMPOSING MATRIX MULTIPLICATION

KERNEL-LEVEL

BLOCK-LEVEL

WARP-LEVEL

THREAD-LEVEL

MatMul(ComputeHierarchy: Kernel,
       A: Matrix((M x K), FP16, GL, ColMajor),
       B: Matrix((K x N), FP16, GL, ColMajor),
       C: Matrix((M x N), FP16, GL, ColMajor))
.tile(128,128).to(Block)

03
GRADUALLY DESCENDING THE COMPUTE AND MEMORY HIERARCHY

.epilog(RF, init, store)

.split(8)

.load(A, SH, contiguousPrefetch) ����

.load(B, SH, crosswisePrefetch)

.tile(64,32).to(Warp)e

.tile(8,8).to(Thread)
    .layout(ColMajor)

.split(1)

.load(A, RF, aToRF)

.load(B, RF, bToRF)

.tile(1,1)

.done

MatMul-specific decompositions: In order to express advanced decompositions for storing computed results, and  accumulating 
intermediate results in registers, we introduce a new decomposition .epilog(l,i,d). Similar to load, i and d are decompositions. 
Here, i describes the initialization of a new buffer in location l (usually in registers) used for accumulating the results.
The .split(k) decomposition is used to create tiles in the K-dimension. This allows efficient use of shared memory. 

In order to generate a high-performance Matrix Multiplication kernel with Fireiron, 
we start with a kernel-level MatMul specification...

These are Fireiron-Decompositions too. We can reuse efficient (partial) implementations!: 

contiguousPrefetch = Move
.tile(128,1).to(Warp)
.tile(64,1).unroll
.tile(2,1).to(Lane)
.done

Move: Another Spec representing data movement between levels of the memory hierarchy. .unroll: A Refinement, more in a second....

 
Refinements allow fine-grained control in decompositions. For example, .unoll is used to indicate loops shall be unrolled during
code generation, and .layout is used to specify the mapping between tiles and the elements of the current compute hierarchy.

PERFORMANCE
GENERATING FAST KERNELS COMPETITVE TO cuBLAS

04

We also support Tensor Cores! In order to use them, computations 
must be decomposed to warp-level WMMA or quad-pair mma 
specifications 

We evaluate high-performance decompositions expressing similar implementations as
provided in cuBLAS. We are targeting the Volta architecture and make heavy use of 

Tensor Cores. We achieve speedups due to smaller tile size selections.
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