
A Language for Describing Optimization Strategies

1University of Münster | 2University of Glasgow

Bastian Hagedorn1 | Johannes Lenfers1 | Thomas Koehler2 | Sergei Gorlatch1 | Michel Steuwer2

MOTIVATION
The Landscape of Optimizing Compilers

Program Compiler Prayer Performance

MOTIVATION

C++ Prayer Performance

a General Purpose Compilers

The Landscape of Optimizing Compilers

MOTIVATION

C++ Prayer Performance

a General Purpose Compilers

"... in an attempt to make the program run faster"

The Landscape of Optimizing Compilers

MOTIVATION

C++ Prayer Performance

a General Purpose Compilers

"Somewhere between -O0 and -O2"

-O0

-O1

-O2

The Landscape of Optimizing Compilers

MOTIVATION

C++
Prayer Performance

a General Purpose Compilers

-O3

The Landscape of Optimizing Compilers

MOTIVATION

C++
Prayer Performance

a General Purpose Compilers

-O3
Compiler Passes

The Landscape of Optimizing Compilers

MOTIVATION

C++
Prayer Performance

a General Purpose Compilers

-O3
Compiler Passes

The Landscape of Optimizing Compilers

MOTIVATION

C++
Prayer Performance

a General Purpose Compilers

-O3
Compiler Passes

The Landscape of Optimizing Compilers

MOTIVATION

b Schedule-Based Compilers

Algorithm

Schedule

Performance

Experts define how to optimize the
program (algorithm) in a separate
schedule

The Landscape of Optimizing Compilers

MOTIVATION

b Schedule-Based Compilers

Algorithm

Schedule

Performance

Experts define how to optimize the
program (algorithm) in a separate
schedule

Fireiron

The Landscape of Optimizing Compilers

MOTIVATION

b Schedule-Based Compilers

Algorithm

Schedule

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Matrix Multiplication

The Landscape of Optimizing Compilers

MOTIVATION

b Schedule-Based Compilers

Algorithm

Schedule

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Matrix Multiplication

Schedule for Nvidia GPUs

The Landscape of Optimizing Compilers

MOTIVATION

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Matrix Multiplication

The Landscape of Optimizing Compilers

MOTIVATION

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Matrix Multiplication

1 Schedules are much harder to write than algorithms

The Landscape of Optimizing Compilers

MOTIVATION

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Matrix Multiplication

1 Schedules are much harder to write than algorithms

2 Schedules and algorithms are not really separated

The Landscape of Optimizing Compilers

MOTIVATION

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Matrix Multiplication

1 Schedules are much harder to write than algorithms

2 Schedules and algorithms are not really separated

3 The schedule "language" is a fixed API and not extensible

The Landscape of Optimizing Compilers

MOTIVATION

Matrix Multiplication

Func prod(“prod");
RDom r(0, size);
prod(x, y) +=
A(x, r) * B(r, y);
out(x, y) = prod(x, y);

1 Schedules are much harder to write than algorithms

2 Schedules and algorithms are not really separated

3 The schedule "language" is a fixed API and not extensible

4 Schedule primitives are not intuitive and have unclear semantics

The Landscape of Optimizing Compilers

MOTIVATION

1 Schedules are much harder to write than algorithms

2 Schedules and algorithms are not really separated

3 The schedule "language" is a fixed API and not extensible

4 Schedule primitives are not intuitive and have unclear semantics

5 Schedules are not expressive enough

Separable Convolution: Sobel Filter
2D Convolution Algorithm

Separated Algorithm

The Landscape of Optimizing Compilers

ELEVATE
Desirable Properties of a Strategy Language

Wouldn't it be great...

if we could look behind the curtains of optimizing compilers and
actually understand how optimizations are applied

ELEVATE
Desirable Properties of a Strategy Language

Wouldn't it be great...

if we could look behind the curtains of optimizing compilers and
actually understand how optimizations are applied

to have a flexible way of specifying optimizations for
your compiler and your programming language

ELEVATE
Desirable Properties of a Strategy Language

Wouldn't it be great...

if we could look behind the curtains of optimizing compilers and
actually understand how optimizations are applied

to have a flexible way of specifying optimizations for
your compiler and your programming language

to build custom optimizations in an extensible language while
avoiding to rely on fixed scheduling APIs

ELEVATE
Desirable Properties of a Strategy Language

Wouldn't it be great...

if we could look behind the curtains of optimizing compilers and
actually understand how optimizations are applied

to have a flexible way of specifying optimizations for
your compiler and your programming language

to build custom optimizations in an extensible language while
avoiding to rely on fixed scheduling APIs

to have a scalable approach that competes with
state-of-the-art solutions

ELEVATE
Desirable Properties of a Strategy Language

Wouldn't it be great...

if we could look behind the curtains of optimizing compilers and
actually understand how optimizations are applied

to have a flexible way of specifying optimizations for
your compiler and your programming language

to build custom optimizations in an extensible language while
avoiding to rely on fixed scheduling APIs

to have a scalable approach that competes with
state-of-the-art solutions

A strategy language should be built with the same
standards as a language describing computation

STRATEGIES
Optimizing Programs like it's 1998 2020

Visser et. al.: Building program optimizers with rewriting strategies (ICFP 1998)

ELEVATE
What actually is a "Strategy"?

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

ELEVATE
What actually is a "Strategy"?

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
 | Failure[P](s: Strategy[P])

ELEVATE
What actually is a "Strategy"?

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
 | Failure[P](s: Strategy[P])

def id[P]: Strategy[P] = (p:P) => Success(p)
def fail[P]: Strategy[P] = (p:P) => Failure(fail)

Two naive generic strategies:

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

val p: ArithExpr = x + 0 // AST: Plus(Var("x"), 0)

Our toy-example target DSL

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

val p: ArithExpr = x + 0 // AST: Plus(Var("x"), 0)

AST Transformation: x + 0 → x

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

val p: ArithExpr = x + 0 // AST: Plus(Var("x"), 0)

def plus0: Strategy[ArithExpr] =
 (p:ArithExpr) => p match {
 case Plus(Var(x),0) => Success(Var(x))
 case _ => Failure(plus0)
 }

Simplification rule expressed in ELEVATE:

AST Transformation: x + 0 → x

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

val p: ArithExpr = x + 0 // AST: Plus(Var("x"), 0)

def plus0: Strategy[ArithExpr] =
 (p:ArithExpr) => p match {
 case Plus(Var(x),0) => Success(Var(x))
 case _ => Failure(plus0)
 }

Simplification rule expressed in ELEVATE:

AST Transformation: x + 0 → x

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

val p: ArithExpr = x + 0 // AST: Plus(Var("x"), 0)

def plus0: Strategy[ArithExpr] =
 (p:ArithExpr) => p match {
 case Plus(Var(x),0) => Success(Var(x))
 case _ => Failure(plus0)
 }

Simplification rule expressed in ELEVATE:

AST Transformation: x + 0 → x

EXAMPLE
A Language-Specific Strategy

Let's encode an arithmetic simplification as a strategy: x + 0 → x

val p: ArithExpr = x + 0 // AST: Plus(Var("x"), 0)

def plus0: Strategy[ArithExpr] =
 (p:ArithExpr) => p match {
 case Plus(Var(x),0) => Success(Var(x))
 case _ => Failure(plus0)
 }

Simplification rule expressed in ELEVATE:

AST Transformation: x + 0 → x

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

EXAMPLE
A More Interesting Language-Specific Strategy

Let's encode another language specific strategy: map(f) ◦ map(g) → map (f ◦ g)

val p: Lift = fun(xs => map(f)(map(g)(xs)))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

EXAMPLE
Program Transformations as Strategies

def myTransformation: Strategy[MyLanguage] =
 (p:MyLanguage) => p match {
 case lhs => Success(rhs)
 case _ => Failure(myTransformation)
 }

Essentially: myTransformation: lhs → rhs

ELEVATE

COMBINATORS
How to Build More Powerful Strategies

The seq combinator applies two strategies in sequence

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

first strategy

second strategy

input program

apply strategy to program

iff successful apply ss to result
otherwise return Failure

COMBINATORS
How to Build More Powerful Strategies

The seq combinator applies two strategies in sequence

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

The lChoice combinator applies the second Strategy only if the first one failed

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

first strategy

second strategy

input program

apply strategy to program

if lhs successful return that
otherwise apply second strategy

COMBINATORS
How to Build More Powerful Strategies

The seq combinator applies two strategies in sequence

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

The lChoice combinator applies the second Strategy only if the first one failed

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

first strategy

second strategy

input program

apply strategy to program

if lhs successful return that
otherwise apply second strategy

a ; b seq(a, b) a <+ b lChoice(a, b)We write for and for

COMBINATORS
How to Build More Powerful Strategies

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

The try combinator tries to apply a strategy and in case of Failure returns the input unchanged

def try[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ id)(p)

Observation: try never fails!

COMBINATORS
How to Build More Powerful Strategies

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

The try combinator tries to apply a strategy and in case of Failure returns the input unchanged

def try[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ id)(p)

The repeat combinator applies a strategy until it's no longer applicable

def repeat[P]: Strategy[P] => Strategy[P] =
s => p => try(s ; repeat(s))(p)

TRAVERSALS
Describing Precise Locations in the AST

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

TRAVERSALS
Describing Precise Locations in the AST

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

TRAVERSALS
Describing Precise Locations in the AST

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

mapFusion: map(f) ◦ map(g) → map (f ◦ g)

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

mapFusion: map(f) ◦ map(g) → map (f ◦ g)

TRAVERSALS
Describing Precise Locations in the AST

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

mapFusion: map(f) ◦ map(g) → map (f ◦ g)

TRAVERSALS
Describing Precise Locations in the AST

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

mapFusion: map(f) ◦ map(g) → map (f ◦ g)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps) == Failure(mapFusion)

Another simple Lift program: (map(f) ◦ map(g) ◦ map(h))(xs)

val threeMaps: Lift = fun(xs => map(f)(map(g)(map(h)(xs))))

def mapFusion: Strategy[Lift] =
 (p:Lift) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

mapFusion: map(f) ◦ map(g) → map (f ◦ g)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps) == Failure(mapFusion)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion

mapFusion(threeMaps)

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

TRAVERSALS
Describing Precise Locations in the AST

mapFusion

mapFusion(threeMaps)

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

TRAVERSALS
Describing Precise Locations in the AST

all(mapFusion)

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

all(mapFusion)(threeMaps)

Let's try...

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

all(mapFusion)(threeMaps)

Let's try...

all(mapFusion)

mapFusion

mapFusion

all fails if the strategy is not applicable to all children

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

all(mapFusion)(threeMaps)

Let's try...

all(mapFusion)

mapFusion

mapFusion

all fails if the strategy is not applicable to all children

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

one(mapFusion)(threeMaps)

Let's try...

one fails if the strategy is not applicable to any child

one(mapFusion)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

one(mapFusion)(threeMaps)

Let's try...

one(mapFusion)

mapFusion

one fails if the strategy is not applicable to any child

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

one(mapFusion)(threeMaps)

Let's try...

one(mapFusion)

mapFusion

one fails if the strategy is not applicable to any child

mapFusion

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

one(mapFusion)(threeMaps)

Let's try...

mapFusion

one fails if the strategy is not applicable to any child

mapFusion

one(mapFusion)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

or we define our own domain-specific traversals:

def body: Strategy[Lift] => Strategy[Lift] =
 s => p => p match {
 case fun(x,b) =>
 s(b).mapSuccess(nb => fun(x,nb))
 case _ => Failure(body) }

body(mapFusion)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

or we define our own domain-specific traversals:

def body: Strategy[Lift] => Strategy[Lift] =
 s => p => p match {
 case fun(x,b) =>
 s(b).mapSuccess(nb => fun(x,nb))
 case _ => Failure(body) }

body(mapFusion)

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

or we define our own domain-specific traversals:

body(mapFusion)

mapFusion

def body: Strategy[Lift] => Strategy[Lift] =
 s => p => p match {
 case fun(x,b) =>
 s(b).mapSuccess(nb => fun(x,nb))
 case _ => Failure(body) }

TRAVERSALS
Describing Precise Locations in the AST

mapFusion(threeMaps)

A strategy is generally always applied at the root of the AST

...but we can use generic one-level traversals
to push strategy applications down the AST

def all[P] : Strategy[P] => Strategy[P]
def one[P] : Strategy[P] => Strategy[P]
def some[P]: Strategy[P] => Strategy[P]

or we define our own domain-specific traversals:

body(arg(mapFusion))

arg(mapFusion)

def arg: Strategy[Lift] => Strategy[Lift] =
 s => p => p match {
 case app(f,e) =>
 s(e).mapSuccess(ne => app(f,ne))
 case _ => Failure(arg) }

mapFusion

COMPLETE TRAVERSALS
Go Down More Than One Step

The topDown traversal traverses the tree until it finds a successful location

def topDown[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ one(topdown(s)))(p)

given strategy

input program

apply at root

lChoice

iff s failed, go down one level and
try recursively again

COMPLETE TRAVERSALS
Go Down More Than One Step

The topDown traversal traverses the tree until it finds a successful location

def topDown[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ one(topDown(s)))(p)

def bottomUp[P]: Strategy[P] => Strategy[P] =
s => p => (one(bottomUp(s)) <+ s)(p)

def allTopDown[P]: Strategy[P] => Strategy[P] =
s => p => (s ; one(allTopDown(s)))(p)

COMPLETE TRAVERSALS
Go Down More Than One Step

The topDown traversal traverses the tree until it finds a successful location

def topDown[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ one(topDown(s)))(p)

def bottomUp[P]: Strategy[P] => Strategy[P] =
s => p => (one(bottomUp(s)) <+ s)(p)

def allTopDown[P]: Strategy[P] => Strategy[P] =
s => p => (s ; one(allTopDown(s)))(p)

or we could also normalize an AST

def normalize[P]: Strategy[P] => Strategy[P] =
s => p => (repeat(topDown(s))(p)

RECAP
What have we seen so far?

to define language-specific transformations as strategies

to compose strategies using generic strategy combinators

to describe precise locations in the AST using generic and
language-specific one-step traversals

to compose one-step traversals to define whole-tree traversals
including normalization

With ELEVATE we are able to...

CASE STUDIES
Put it into Practice

AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

Efficient Differentiable Programming in a
Functional Array-Processing LanguageICFP'19:

Arbitrary F-Smooth expressions are differentiable

They achieve efficiency by rewriting differentiated code

The strategy for applying rewrite rules can become tricky" "Use ELEVATE for optimizing
F-Smooth programs

AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

F-Smooth Rewrite Rules

AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

F-Smooth Rewrite Rules

def lengthBuild: Strategy[FSmooth] =
 (p:FSmooth) => p match {
 case length(build(e0,e1) => Success(e0)
 case _ => Failure(lengthBuild)
 }

ELEVATE

AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

F-Smooth Rewrite Rules

def lengthBuild: Strategy[FSmooth] =
 (p:FSmooth) => p match {
 case length(build(e0,e1) => Success(e0)
 case _ => Failure(lengthBuild)
 }

ELEVATE

Example 5: Simplification: (MT)T = M

normalize(lengthBuild <+ …)((MT)T) = Success(M)

We are able to trace the rule applications: Here, 12 steps

AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

F-Smooth Rewrite Rules

def lengthBuild: Strategy[FSmooth] =
 (p:FSmooth) => p match {
 case length(build(e0,e1) => Success(e0)
 case _ => Failure(lengthBuild)
 }

ELEVATE

Example 5: Simplification: (MT)T = M

normalize(lengthBuild <+ …)((MT)T) = Success(M)

We are able to trace the rule applications: Here, 12 steps

Flexible: ELEVATE is able to implement and optimize
existing rewrite systems

IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Separable Convolution: Sobel Filter

Halide: 2D Convolution

Halide: Separated Convolution

no schedule for this optimization

IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |>
 pad2D(1) |> // boundary handling
 slide2D(3)(1) |> // neighborhood creation
 map2D(fun(nbh => // 2D stencil computation
 dot(join(weights2d))(join(nbh))))))

Separable Convolution: Sobel Filter

Halide: 2D Convolution

Halide: Separated Convolution

img |>
 pad2D(1) |>
 slide2D(3)(1) |>
 map2D(fun(nbh => nbh |> // 2 1D stencils
 map(dot(weightsH)) |> map(dot(weightsV))))

Lift: Separated Convolution

no schedule for this optimization

IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |>
 pad2D(1) |> // boundary handling
 slide2D(3)(1) |> // neighborhood creation
 map2D(fun(nbh => // 2D stencil computation
 dot(join(weights2d))(join(nbh))))))

Separable Convolution: Sobel Filter

Halide: 2D Convolution

Halide: Separated Convolution

img |>
 pad2D(1) |>
 slide2D(3)(1) |>
 map2D(fun(nbh => nbh |> // 2 1D stencils
 map(dot(weightsH)) |> map(dot(weightsV))))

Lift: Separated Convolution

ELEVATE: Separate Convolution using Strategies

topDown(separateConv)(conv2D)

no schedule for this optimization

def separateConv(w2d:Lift, wh:Lift, wv:Lift): Strategy[Lift] = p =>
 p match {
 case app(app(app(reduce, add), 0), app(app(map, mult),
 app(app(zip, app(join, w)), app(join, nbh)))) if w==w2d =>
 Success(nbh |> map(dot(wh)) |> dot(wv))
 case _ => Failure(separateConv) }

IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |>
 pad2D(1) |> // boundary handling
 slide2D(3)(1) |> // neighborhood creation
 map2D(fun(nbh => // 2D stencil computation
 dot(join(weights2d))(join(nbh))))))

img |>
 pad2D(1) |>
 slide2D(3)(1) |>
 map2D(fun(nbh => nbh |> // 2 1D stencils
 map(dot(weightsH)) |> map(dot(weightsV))))

Lift: Separated Convolution

ELEVATE: Separate Convolution using Strategies

topDown(separateConv)(conv2D)

def separateConv(w2d:Lift, wh:Lift, wv:Lift): Strategy[Lift] = p =>
 p match {
 case app(app(app(reduce, add), 0), app(app(map, mult),
 app(app(zip, app(join, w)), app(join, nbh)))) if w==w2d =>
 Success(nbh |> map(dot(wh)) |> dot(wv))
 case _ => Failure(separateConv) }

Our strategies achieve the same trend in performance
→ they encode the same optimizations as described by the schedules

IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |>
 pad2D(1) |> // boundary handling
 slide2D(3)(1) |> // neighborhood creation
 map2D(fun(nbh => // 2D stencil computation
 dot(join(weights2d))(join(nbh))))))

img |>
 pad2D(1) |>
 slide2D(3)(1) |>
 map2D(fun(nbh => nbh |> // 2 1D stencils
 map(dot(weightsH)) |> map(dot(weightsV))))

Lift: Separated Convolution

ELEVATE: Separate Convolution using Strategies

topDown(separateConv)(conv2D)

def separateConv(w2d:Lift, wh:Lift, wv:Lift): Strategy[Lift] = p =>
 p match {
 case app(app(app(reduce, add), 0), app(app(map, mult),
 app(app(zip, app(join, w)), app(join, nbh)))) if w==w2d =>
 Success(nbh |> map(dot(wh)) |> dot(wv))
 case _ => Failure(separateConv) }

Extensible: ELEVATE allows to create your own custom
and domain-specific optimizations

DEEP LEARNING

Tutorial: How to optimize GEMM

In this tutorial, we will demonstrate how to use TVM to optimize square matrix multiplication
and achieve 200 times faster than baseline by simply adding 18 extra lines of code.

Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

DEEP LEARNING

Tutorial: How to optimize GEMM

TVM: Matrix Multiplication

"parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')

xo, yo, xi, yi = s[C].tile(
 C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)

xc, yc = s[CC].op.axis

k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)

s[C].parallel(xo)

x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

Implementing a Scheduling Language using Strategies

Some versions require to manually
change the algorithm again!

DEEP LEARNING

Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

DEEP LEARNING

Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

val dot = fun((a,b) => zip(a,b) |> map(*) |> reduce(+,0))
val mm = fun(a :: M.K.float => fun(b :: K.N.float =>
 map(fun(arow => // iterating over M
 map(fun(bcol => // iterating over N
 dot(arow, bcol) // iterating over K
)(transpose(b))
)(a)

Lift: Matrix Multiplication

DEEP LEARNING

Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

val dot = fun((a,b) => zip(a,b) |> map(*) |> reduce(+,0))
val mm = fun(a :: M.K.float => fun(b :: K.N.float =>
 map(fun(arow => // iterating over M
 map(fun(bcol => // iterating over N
 dot(arow, bcol) // iterating over K
)(transpose(b))
)(a)

Lift: Matrix Multiplication

(DFNF ; // normalize AST
 topDown(fuseMapReduce) ; // loop-fusion
 lowerToC // lowering
)(mm)

"baseline" ELEVATE strategy

No implicit optimizations!
Every transformation is explicit

and therefore customizable

DEEP LEARNING

Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

val dot = fun((a,b) => zip(a,b) |> map(*) |> reduce(+,0))
val mm = fun(a :: M.K.float => fun(b :: K.N.float =>
 map(fun(arow => // iterating over M
 map(fun(bcol => // iterating over N
 dot(arow, bcol) // iterating over K
)(transpose(b))
)(a)

Lift: Matrix Multiplication

(DFNF ; // normalize AST
 topDown(fuseMapReduce) ; // loop-fusion
 lowerToC // lowering
)(mm)

"baseline" ELEVATE strategy

No implicit optimizations!
Every transformation is explicit

and therefore customizable

DEEP LEARNING

blocking version
xo, yo, xi, yi = s[C].tile(
 C.op.axis[0],C.op.axis[1],32,32)
k, = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)

Implementing a Scheduling Language using Strategies

TVM: blocking schedule

DEEP LEARNING

blocking version
xo, yo, xi, yi = s[C].tile(
 C.op.axis[0],C.op.axis[1],32,32)
k, = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)

Implementing a Scheduling Language using Strategies

val blocking = (topDown(tile(32,32)) ;
 topDown(isReduce ; split(4)) ;
 topDown(reorder(Seq(1,2,5,6,3,4))))
(blocking ; lowerToC)(mm)

TVM: blocking schedule

ELEVATE: blocking strategy

DEEP LEARNING
Implementing a Scheduling Language using Strategies

Our strategies achieve the same trend in performance
→ they encode the same optimizations as described by the schedules

DEEP LEARNING
Implementing a Scheduling Language using Strategies

Baseline

ELEVATE

Parallel

DEEP LEARNING
Implementing a Scheduling Language using Strategies

Rewriting the input program requires less than 60 seconds per version

DEEP LEARNING
Implementing a Scheduling Language using Strategies

Rewriting the baseline version requires less than 60 seconds per version

Scalable: ELEVATE allows to implement state-of-the art
scheduling languages from first principles

THANK YOU
for your attention!

ELEVATE is OpenSource: github.com/elevate-lang
b.hagedorn@wwu.de

