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1 Schedules are much harder to write than algorithms

2 Schedules and algorithms are not really separated

3 The schedule "language" is a fixed API and not extensible

4 Schedule primitives are not intuitive and have unclear semantics

5 Schedules are not expressive enough

Separable Convolution: Sobel Filter
2D Convolution Algorithm

Separated Algorithm

The Landscape of Optimizing Compilers
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ELEVATE
Desirable Properties of a Strategy Language

Wouldn't it be great...

if we could look behind the curtains of optimizing compilers and 
actually understand how optimizations are applied

to have a flexible way of specifying optimizations for 
your compiler and your programming language

to build custom optimizations in an extensible language while 
avoiding to rely on fixed scheduling APIs

to have a scalable approach that competes with 
state-of-the-art solutions

A strategy language should be built with the same 
standards as a language describing computation



STRATEGIES
Optimizing Programs like it's 1998 2020

Visser et. al.: Building program optimizers with rewriting strategies (ICFP 1998)
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What actually is a "Strategy"?

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
                 | Failure[P](s: Strategy[P])

def   id[P]: Strategy[P] = (p:P) => Success(p)
def fail[P]: Strategy[P] = (p:P) => Failure(fail)

Two naive generic strategies:
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EXAMPLE
Program Transformations as Strategies

def myTransformation: Strategy[MyLanguage] = 
  (p:MyLanguage) => p match {
    case lhs => Success( rhs )
    case _   => Failure( myTransformation )       
  }

Essentially: myTransformation:  lhs → rhs

ELEVATE
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COMBINATORS
How to Build More Powerful Strategies

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

The try combinator tries to apply a strategy and in case of Failure returns the input unchanged

def try[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ id)(p)

The repeat combinator applies a strategy until it's no longer applicable

def repeat[P]: Strategy[P] => Strategy[P] =
s => p => try(s ; repeat(s))(p)
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to push strategy applications down the AST 
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def arg: Strategy[Lift] => Strategy[Lift] = 
  s => p => p match {
    case app(f,e) => 
      s(e).mapSuccess( ne => app(f,ne) )
    case _ => Failure( arg )              }

mapFusion
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The topDown traversal traverses the tree until it finds a successful location 

def topDown[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ one(topdown(s)))(p)

given strategy

input program

apply at root

lChoice

iff s failed, go down one level and 
try recursively again
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COMPLETE TRAVERSALS
Go Down More Than One Step

The topDown traversal traverses the tree until it finds a successful location 

def topDown[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ one(topDown(s)))(p)

def bottomUp[P]: Strategy[P] => Strategy[P] =
s => p => (one(bottomUp(s)) <+ s)(p)

def allTopDown[P]: Strategy[P] => Strategy[P] =
s => p => (s ; one(allTopDown(s)))(p)

or we could also normalize an AST

def normalize[P]: Strategy[P] => Strategy[P] =
s => p => (repeat(topDown(s))(p)



RECAP
What have we seen so far?

to define language-specific transformations as strategies

to compose strategies using generic strategy combinators

to describe precise locations in the AST using generic and 
language-specific one-step traversals 

to compose one-step traversals to define whole-tree traversals 
including normalization

With ELEVATE we are able to...



CASE STUDIES
Put it into Practice



AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

Efficient Differentiable Programming in a 
Functional Array-Processing LanguageICFP'19:

Arbitrary F-Smooth expressions are differentiable

They achieve efficiency by rewriting differentiated code

The strategy for applying rewrite rules can become tricky" "Use ELEVATE for optimizing 
F-Smooth programs
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F-Smooth Rewrite Rules



AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

F-Smooth Rewrite Rules

def lengthBuild: Strategy[FSmooth] = 
  (p:FSmooth) => p match {
    case length(build(e0,e1) => Success( e0 )
    case _   => Failure( lengthBuild )       
  }

ELEVATE
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Example 5: Simplification: (MT)T = M

normalize(lengthBuild <+ …)((MT)T) = Success(M)

We are able to trace the rule applications: Here, 12 steps



AUTOMATIC DIFFERENTIATION
Optimizing F-Smooth using Elevate

F-Smooth Rewrite Rules

def lengthBuild: Strategy[FSmooth] = 
  (p:FSmooth) => p match {
    case length(build(e0,e1) => Success( e0 )
    case _   => Failure( lengthBuild )       
  }

ELEVATE

Example 5: Simplification: (MT)T = M

normalize(lengthBuild <+ …)((MT)T) = Success(M)

We are able to trace the rule applications: Here, 12 steps

Flexible: ELEVATE is able to implement and optimize 
existing rewrite systems



IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Separable Convolution: Sobel Filter

Halide: 2D Convolution

Halide: Separated Convolution

no schedule for this optimization



IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |> 
  pad2D(1) |>   // boundary handling
    slide2D(3)(1) |>      // neighborhood creation 
      map2D(fun(nbh =>    // 2D stencil computation
        dot(join(weights2d))(join(nbh))))))

Separable Convolution: Sobel Filter

Halide: 2D Convolution

Halide: Separated Convolution

img |> 
  pad2D(1) |> 
    slide2D(3)(1) |>          
      map2D(fun(nbh => nbh |> // 2 1D stencils
        map(dot(weightsH)) |> map(dot(weightsV)) ))

Lift: Separated Convolution

no schedule for this optimization



IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |> 
  pad2D(1) |>   // boundary handling
    slide2D(3)(1) |>      // neighborhood creation 
      map2D(fun(nbh =>    // 2D stencil computation
        dot(join(weights2d))(join(nbh))))))

Separable Convolution: Sobel Filter

Halide: 2D Convolution

Halide: Separated Convolution

img |> 
  pad2D(1) |> 
    slide2D(3)(1) |>          
      map2D(fun(nbh => nbh |> // 2 1D stencils
        map(dot(weightsH)) |> map(dot(weightsV)) ))

Lift: Separated Convolution

ELEVATE: Separate Convolution using Strategies

topDown(separateConv)(conv2D)

no schedule for this optimization

def separateConv(w2d:Lift, wh:Lift, wv:Lift): Strategy[Lift] = p =>   
 p match {
  case app(app(app(reduce, add), 0), app(app(map, mult),
        app(app(zip, app(join, w)), app(join, nbh)))) if w==w2d =>
            Success(nbh |> map(dot(wh)) |> dot(wv))
  case _ => Failure(separateConv)                                 }
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Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |> 
  pad2D(1) |>   // boundary handling
    slide2D(3)(1) |>      // neighborhood creation 
      map2D(fun(nbh =>    // 2D stencil computation
        dot(join(weights2d))(join(nbh))))))

img |> 
  pad2D(1) |> 
    slide2D(3)(1) |>          
      map2D(fun(nbh => nbh |> // 2 1D stencils
        map(dot(weightsH)) |> map(dot(weightsV)) ))

Lift: Separated Convolution

ELEVATE: Separate Convolution using Strategies

topDown(separateConv)(conv2D)

def separateConv(w2d:Lift, wh:Lift, wv:Lift): Strategy[Lift] = p =>   
 p match {
  case app(app(app(reduce, add), 0), app(app(map, mult),
        app(app(zip, app(join, w)), app(join, nbh)))) if w==w2d =>
            Success(nbh |> map(dot(wh)) |> dot(wv))
  case _ => Failure(separateConv)                                 }

Our strategies achieve the same trend in performance
→ they encode the same optimizations as described by the schedules



IMAGE PROCESSING
Expressing Separable Convolution with Elevate and Lift

Lift: 2D Convolution

img |> 
  pad2D(1) |>   // boundary handling
    slide2D(3)(1) |>      // neighborhood creation 
      map2D(fun(nbh =>    // 2D stencil computation
        dot(join(weights2d))(join(nbh))))))

img |> 
  pad2D(1) |> 
    slide2D(3)(1) |>          
      map2D(fun(nbh => nbh |> // 2 1D stencils
        map(dot(weightsH)) |> map(dot(weightsV)) ))

Lift: Separated Convolution

ELEVATE: Separate Convolution using Strategies

topDown(separateConv)(conv2D)

def separateConv(w2d:Lift, wh:Lift, wv:Lift): Strategy[Lift] = p =>   
 p match {
  case app(app(app(reduce, add), 0), app(app(map, mult),
        app(app(zip, app(join, w)), app(join, nbh)))) if w==w2d =>
            Success(nbh |> map(dot(wh)) |> dot(wv))
  case _ => Failure(separateConv)                                 }

Extensible: ELEVATE allows to create your own custom 
and domain-specific optimizations



DEEP LEARNING

Tutorial: How to optimize GEMM

In this tutorial, we will demonstrate how to use TVM to optimize square matrix multiplication 
and achieve 200 times faster than baseline by simply adding 18 extra lines of code.

# Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies



DEEP LEARNING

Tutorial: How to optimize GEMM

TVM: Matrix Multiplication

# "parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')

xo, yo, xi, yi = s[C].tile(
  C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)

xc, yc = s[CC].op.axis

k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)

s[C].parallel(xo)

x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

Implementing a Scheduling Language using Strategies

Some versions require to manually 
change the algorithm again!
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# Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies
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# Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

val dot = fun((a,b) => zip(a,b) |> map(*) |> reduce(+,0))
val mm = fun(a :: M.K.float => fun(b :: K.N.float =>
  map( fun(arow => // iterating over M
    map( fun(bcol => // iterating over N
      dot(arow, bcol)  // iterating over K
    )(transpose(b))
  )(a)

Lift: Matrix Multiplication
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# Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

val dot = fun((a,b) => zip(a,b) |> map(*) |> reduce(+,0))
val mm = fun(a :: M.K.float => fun(b :: K.N.float =>
  map( fun(arow => // iterating over M
    map( fun(bcol => // iterating over N
      dot(arow, bcol)  // iterating over K
    )(transpose(b))
  )(a)

Lift: Matrix Multiplication

(DFNF ;                   // normalize AST
 topDown(fuseMapReduce) ; // loop-fusion
 lowerToC                 // lowering
)(mm)

"baseline" ELEVATE strategy

No implicit optimizations! 
Every transformation is explicit 

and therefore customizable
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# Algorithm
k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

TVM: Matrix Multiplication

Implementing a Scheduling Language using Strategies

val dot = fun((a,b) => zip(a,b) |> map(*) |> reduce(+,0))
val mm = fun(a :: M.K.float => fun(b :: K.N.float =>
  map( fun(arow => // iterating over M
    map( fun(bcol => // iterating over N
      dot(arow, bcol)  // iterating over K
    )(transpose(b))
  )(a)

Lift: Matrix Multiplication

(DFNF ;                   // normalize AST
 topDown(fuseMapReduce) ; // loop-fusion
 lowerToC                 // lowering
)(mm)  

"baseline" ELEVATE strategy

No implicit optimizations! 
Every transformation is explicit 

and therefore customizable
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# blocking version
xo, yo, xi, yi = s[C].tile(
  C.op.axis[0],C.op.axis[1],32,32)
k,     = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)

Implementing a Scheduling Language using Strategies

TVM: blocking schedule
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# blocking version
xo, yo, xi, yi = s[C].tile(
  C.op.axis[0],C.op.axis[1],32,32)
k,     = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)

Implementing a Scheduling Language using Strategies

val blocking = (topDown(tile(32,32)) ;
                topDown( isReduce ; split(4) ) ;
                topDown(reorder(Seq(1,2,5,6,3,4))) )
(blocking ; lowerToC)(mm)

TVM: blocking schedule

ELEVATE: blocking strategy



DEEP LEARNING
Implementing a Scheduling Language using Strategies

Our strategies achieve the same trend in performance
→ they encode the same optimizations as described by the schedules



DEEP LEARNING
Implementing a Scheduling Language using Strategies

Baseline

ELEVATE

Parallel



DEEP LEARNING
Implementing a Scheduling Language using Strategies

Rewriting the input program requires less than 60 seconds per version



DEEP LEARNING
Implementing a Scheduling Language using Strategies

Rewriting the baseline version requires less than 60 seconds per version

Scalable: ELEVATE allows to implement state-of-the art 
scheduling languages from first principles



THANK YOU
for your attention!

ELEVATE is OpenSource:    github.com/elevate-lang
b.hagedorn@wwu.de


