

WHAT IS
?

AND WHY DO WE WANT IT?

REQUIRES HIGH PERFORMANCE
FOR SCIENTIFIC APPLICATIONS

MODERN PARALLEL

PROVIDES HIGH PERFORMANCE
BUT IS HARD TO PROGRAM

HOW TO MAKE HIGH PERFORMANCE
ACCESSIBLE TO DOMAIN SCIENTISTS?

1

HOW TO MAKE HIGH PERFORMANCE
ACCESSIBLE TO DOMAIN SCIENTISTS?

Domain-Specific
Compiler

HIGH-LEVEL ABSTRACTIONS
FOR DOMAIN-SCIENTISTS

AUTOMATIC CODE GENERATION
AND OPTIMIZATION

2

WHY TRYING TO ACHIEVE THIS

WHAT IS WRONG WITH THEM?
?

DOMAIN-SPECIFIC COMPILERS ARE
NOT REUSABLE ALMOST BY DEFINITION

Domain-Specific
Compiler

HIGH-LEVEL ABSTRACTIONS ONLY
FOR ONE PARTICULAR DOMAIN

OPTIMIZATION FOR ONE
PARTICULAR HARDWARE

ARCHITECTURE

3

DOMAIN-SPECIFIC COMPILERS ARE
NOT REUSABLE ALMOST BY DEFINITION

4

DOMAIN-SPECIFIC COMPILERS ARE
NOT REUSABLE ALMOST BY DEFINITION

4

Domain-Specific
Compiler

QUESTION 1: HOW TO REPRESENT
DOMAIN-SPECIFIC COMPUTATIONS?

HOW TO DESIGN A REUSABLE
DOMAIN-SPECIFIC COMPILER?

QUESTION 2 : HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS

5

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

Three approaches used in existing state-of-the-art compilers today:

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

LOSS OF DOMAIN-SPECIFIC INFORMATION

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

LOSS OF DOMAIN-SPECIFIC INFORMATION

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

LOSS OF DOMAIN-SPECIFIC INFORMATION

NEEDS MULTIPLE MIDDLE- & BACK-ENDS

6

HIGH-LEVEL INTERMEDIATE
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE
REPRESENTATIONS

HOW TO REPRESENT DOMAIN-
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

LOSS OF DOMAIN-SPECIFIC INFORMATION

NEEDS MULTIPLE MIDDLE- & BACK-ENDS

How to define an IR for high-performance domain-specific compilation
that can be reused across application domains and hardware
architectures while providing multiple levels of abstraction?

7

Domain-Specific
Compiler

QUESTION 1: HOW TO REPRESENT
DOMAIN-SPECIFIC COMPUTATIONS?

HOW TO DESIGN A
DOMAIN-SPECIFIC COMPILER?

QUESTION 2 : HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS

8

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

Three approaches used in existing state-of-the-art compilers today:

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE: BLACK BOX

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE: BLACK BOX

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE: BLACK BOX

NO CONTROL: "ONE-SIZE-FITS-ALL"

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE: BLACK BOX

NO CONTROL: "ONE-SIZE-FITS-ALL"

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE: BLACK BOX

NO CONTROL: "ONE-SIZE-FITS-ALL"

NO REUSE: BUILT-IN OPTIMIZATIONS

9

RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE BLACK BOX

NO CONTROL: "ONE-SIZE-FITS-ALL"

NO REUSE: BUILT-IN OPTIMIZATIONS
How can we encode and apply domain-specific optimizations for high-
performance code generation while providing precise control and the ability to
define custom optimizations, thus achieving a reusable optimization approach
across application domains and hardware architectures?

10

PART I: A CASE STUDY
Fireiron: A novel domain-specific compiler for GPUs that
outperforms manually tuned high-performance libraries

 PACT'20

11

PART II: ADDRESSING THE IR CHALLENGE
High-performance stencil computations with Lift, a
generic IR for domain-specific computations

PART I: A CASE STUDY
Fireiron: A novel domain-specific compiler for GPUs that
outperforms manually tuned high-performance libraries

 PACT'20

 CGO'18

11

PART II: ADDRESSING THE IR CHALLENGE
High-performance stencil computations with Lift, a
generic IR for domain-specific computations

PART I: A CASE STUDY
Fireiron: A novel domain-specific compiler for GPUs that
outperforms manually tuned high-performance libraries

PART III: ADDRESSING THE OPTIMIZATION CHALLENGE
Elevate: A language for expressing optimization strategies
as compositions of generic building blocks

 PACT'20

 CGO'18

 ICFP'20

11

FIREIRON:
Domain-Specific
Compilation for GPUs

PART I: A CASE STUDY

12

FIREIRON:
Matrix-Multiplication-Specific
Compilation for GPUs

PART I: A CASE STUDY

12

32

Computing Matrix Multiplication

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

13

33

State-of-the-art compilers Optimized by human experts -
Best* implementation available today

GAP IN PERFORMANCE

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

13

34

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as second-class concepts!

14

35

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as second-class concepts!

14

Matrix Multiplication:

Schedule Language

for Expressing Optimizations

36

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as second-class concepts!

14

Matrix Multiplication:

there is no schedule for expressing data movement optimizations!

37

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as first-class concepts!
by explicitly representing them in our IR and optimizations

15

38

GPU CODE IS HIERARCHICALLY STRUCTURED

Matrix Multiplication code
written in (pseudo) CUDA

16

39

GPU CODE IS HIERARCHICALLY STRUCTURED

17

40

GPU CODE IS HIERARCHICALLY STRUCTURED

18

41

GPU CODE IS HIERARCHICALLY STRUCTURED

19

42

GPU CODE IS HIERARCHICALLY STRUCTURED

20

43

GPU CODE IS HIERARCHICALLY STRUCTURED

FIREIRON:
Programmers describe hierarchical structure of both

Computations and Data Movements
using Specifications and Decompositions

21

44

DECOMPOSING HIGH-PERFORMANCE KERNELS

Specifications:
Data-Structure describing the task

performed in a specific region of code

22

45

DECOMPOSING HIGH-PERFORMANCE KERNELS

Specifications:
Data-Structure describing the task

performed in a specific region of code

23

46

DECOMPOSING HIGH-PERFORMANCE KERNELS

Decompositions:
How to implement the current spec

24

47

DECOMPOSING HIGH-PERFORMANCE KERNELS

.tile .spli
t

.move .epil
og

Decompositions:
How to implement the current spec

25

48

DECOMPOSING HIGH-PERFORMANCE KERNELS

.tile .spli
t

.move .epil
og

Decompositions:
How to implement the current spec

Describing the implementation strategy in Fireiron:

26

49

DECOMPOSING HIGH-PERFORMANCE KERNELS

Data Movement
Optimizations

Data Movement
Optimizations

27

50

EVALUATION

Hypothesis A: Code related to data movements makes
up a significant fraction in high-performance kernels.

28

51

EVALUATION

Hypothesis A: Code related to data movements makes
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that
are applied by experts in manually-tuned code.

29

52

EVALUATION

Hypothesis A: Code related to data movements makes
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that
are applied by experts in manually-tuned code.

Hypothesis C: Fireiron-generated code achieves
performance close to expert-tuned code

30

53

EVALUATION

Hypothesis A: Code related to data movements makes
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that
are applied by experts in manually-tuned code.

Hypothesis C: Fireiron-generated code achieves
performance close to expert-tuned code

Hypothesis D: Experts can write Fireiron strategies that
generate code which outperforms the state-of-the-art

31

54

EVALUATION

Hypothesis A: Code related to data movements makes
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that
are applied by experts in manually-tuned code.

Hypothesis C: Fireiron-generated code achieves
performance close to expert-tuned code

Hypothesis D: Experts can write Fireiron strategies that
generate code which outperforms the state-of-the-art

FIREIRON

Problem: Time-intensive: Developing Fireiron required
about nine months of full-time work

v1. Codegen
Auto-Scheduling

Supervisors

9 Months 3 Months 3 Months

9 Months9 Months

32

55

EVALUATION

Hypothesis A: Code related to data movements makes
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that
are applied by experts in manually-tuned code.

Hypothesis C: Fireiron-generated code achieves
performance close to expert-tuned code

Hypothesis D: Experts can write Fireiron strategies that
generate code which outperforms the state-of-the-art

Problem: Not easily reusable: IR & Optimizations
specialized for matrix multiplications and GPUs

Problem: Time-intensive: Developing Fireiron required
about nine months of full-time work

FIREIRON

33

A generic IR for
Domain-specific computations

PART II: ADDRESSING THE IR CHALLENGE

34

Domain-Specific
Compiler

The Lift approach (EST. 2015)

LIFT

35

Domain-Specific
Compiler

The Lift approach (EST. 2015)
ALGORITHMIC PATTERNS

LIFT

35

Domain-Specific
Compiler

The Lift approach (EST. 2015)
ALGORITHMIC PATTERNS

OPENCL-PATTERNS

LIFT

35

Domain-Specific
Compiler

The Lift approach (EST. 2015)
ALGORITHMIC PATTERNS

OPENCL-PATTERNS

LIFT

MATRIX MULTIPLICATION

35

Domain-Specific
Compiler

The Lift approach (EST. 2015)
ALGORITHMIC PATTERNS

OPENCL-PATTERNS

LIFT

MATRIX MULTIPLICATION

REWRITE RULES

35

Domain-Specific
Compiler

The Lift approach (EST. 2015)
ALGORITHMIC PATTERNS

OPENCL-PATTERNS

LIFT

MATRIX MULTIPLICATION

REWRITE RULES

36

Domain-Specific
Compiler

The Lift approach

LIFT

works well for dense linear algebra: ICFP'15 HLPGPU'16 CASES'16 CGO'17

37

Domain-Specific
Compiler

LIFT

Lift IR is easily extensible, reusable across domains and
provides multiple levels of abstraction

This work: demonstrating that the

(Addressing the IR challenge)

by adding support for Stencil computations

38

Stencil computations in Lift?

map()
reduce()

split(n)
join

zip

Existing Patterns: 1D STENCIL COMPUTATION

HOW TO EXPRESS THIS IN LIFT?

39

Stencil computations in Lift? No Problem . . .

map()
reduce()

split(n)
join

zip

NO REUSE

DOMAIN-SPECIFIC

MULTIDIMENSIONAL?
of existing patterns and rewrites

rather than generic

is it composable?

stencil

Existing Patterns:

New Pattern?

1D STENCIL COMPUTATION

40

for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j += 1; j ++) {
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c

decomposing stencil computations

41

def stencil1D = fun(xs =>
 map(reduce(add, 0),
 slide(3,1,
 pad(1,1,clamp,xs))))

stencil1D.lift

slide(n,s)

pad(l,r,b)

map

pad

slide

map()
reduce()

split(n)
join

zip

expressing stencil computations

42

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))
pad2 = map(pad(1,1,clamp,pad(1,1,clamp,input)))

Multidimensional stencil computations

Multidimensional Domain-specific abstractions as
compositions of one-dimensional generic patterns

Decompose to re-compose

43

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))

pad3 = map(map(pad(1,1,clamp(map(pad(1,1,clamp,pad(1,1,clamp,input)))))))

Multidimensional stencil computations

Multidimensional Domain-specific abstractions as
compositions of one-dimensional generic patterns

Decompose to re-compose

44

Domain-Specific
Compiler

Supporting stencil computations ALGORITHMIC PATTERNS

LIFT

2 Patterns
pad, slide

We added:

45

Domain-Specific
Compiler

Supporting stencil computations ALGORITHMIC PATTERNS

LIFT

2 Patterns
pad, slide

We added:

overlapped tiling
1 Rewrite Rule

map(f, slide(3,1,input))

join(map(tile ⇒
 map(f, slide(3,1,tile)),
 slide(u,v,input)))

u

v

46

LIFT ACHIEVES PERFORMANCE COMPETITIVE TO HAND OPTIMIZED CODE

Comparison with hand-optimized codes

HIGHER IS BETTER

47

Comparison with hand-optimized codes

HIGHER IS BETTER

LIFT ACHIEVES PERFORMANCE COMPETITIVE TO HAND OPTIMIZED CODE

47

Comparison with hand-optimized codes

HIGHER IS BETTER

LIFT ACHIEVES PERFORMANCE COMPETITIVE TO HAND OPTIMIZED CODE

47

LIFT OUTPERFORMS STATE-OF-THE-ART OPTIMIZING COMPILERS

Comparison with Polyhedral compilation

HIGHER IS BETTER

48

ADDRESSED

Lift provides no solution here.
Exploration and auto-tuning does not scale.
Evaluation required more than 2 days!

49

A Language for Describing Optimization Strategies

PART III: ADDRESSING THE OPTIMIZATION CHALLENGE

SCHEDULE-BASED COMPILATION
Decoupling Computations and Optimizations

k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

"parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')
xo, yo, xi, yi = s[C].tile(
 C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)
s[C].parallel(xo)
x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

200x

Schedule

50

k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

"parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')
xo, yo, xi, yi = s[C].tile(
 C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)
s[C].parallel(xo)
x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

No clear separation
 hinders reuse!

No well-defined semantics
 hinders understanding!

Optimizations are built-in
 no extensibility!

SCHEDULE-BASED COMPILATION
Decoupling Computations and Optimizations

51

OUR GOALS
A Principled Way to Separate, Describe, and Apply Optimizations

52

1

2

3

4

5

Separate concerns: Computations should not be changed for expressing optimizations

Facilitate reuse: Clear separation between computations and optimizations

Enable composability: Allow user-defined abstractions composed of simple building blocks

Allow reasoning: Well-defined semantics for all provided building blocks

Be explicit: Avoid all implicit behaviour during compilation

The Functional Way
to high-performance domain-specific compilation

Functional Data-parallel Language
for Expressing Computations

Functional Strategy Language
for Composing Rewrite Rules

(the spiritual successor to Lift)

53

ELEVATE
A Language for Describing Optimization Strategies

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
 | Failure[P](s: Strategy[P])

54

ELEVATE
A Language for Describing Optimization Strategies

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
 | Failure[P](s: Strategy[P])

def mapFusion: Strategy[Rise] =
 (p:Rise) => p match {
 case app(app(map, f),
 app(app(map, g), xs)) =>
 Success(map(fun(x => f(g(x))))(xs))
 case _ => Failure(mapFusion)
 }

mapFusion () =

Elevate
Rise

Rewrite Rules are examples for basic strategies: map(f) ∘ map(g) = map(f∘g)

54

COMBINATORS
How to Build More Powerful Strategies

Sequential Composition (;)

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

Left Choice (<+)

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

Try

def try[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ id)(p)

Repeat

def repeat[P]: Strategy[P] => Strategy[P] =
s => p => try(s ; repeat(s))(p)

based on Visser et. al. ICFP'98

55

TRAVERSALS
Describing Precise Locations

threemaps =

mapFusion () ?

There are two possible locations for successfully applying the rule
56

TRAVERSALS
Describing Precise Locations

threemaps =

body(mapFusion) ()

There are two possible locations for successfully applying the rule

def body: Traversal[Rise] = s => p => p match {
 case fun(x,b) => (nb => fun(x,nb) <$> s(b)
 case _ => Failure(body(s)) }

apply s at body of function abstraction

57

TRAVERSALS
Describing Precise Locations

threemaps =

body(argument(mapFusion)) ()

There are two possible locations for successfully applying the rule

def argument: Traversal[Rise] = s => p => p match {
 case app(f,a) => (na => app(f,na) <$> s(a)
 case _ => Failure(argument(s)) }

def body: Traversal[Rise] = s => p => p match {
 case fun(x,b) => (nb => fun(x,nb) <$> s(b)
 case _ => Failure(body(s)) }

apply s at argument of function application

58

NORMALIZATION
More Complex Traversals

def topDown: Traversal[Rise] = s => p => (s <+ one(topDown(s)))(p)
def bottomUp: Traversal[Rise] = s => p => (one(topDown(s)) <+ s)(p)
...

Generic Tree Traversals...

to
pD
ow
n

bo
tt
om
Up

59

NORMALIZATION
More Complex Traversals

def topDown: Traversal[Rise] = s => p => (s <+ one(topDown(s)))(p)
def bottomUp: Traversal[Rise] = s => p => (one(topDown(s)) <+ s)(p)
...

def normalize: Traversal[Rise] = s => p => repeat(topDown(s))(p)

Generic Tree Traversals...

… and a strategy for normalization

to
pD
ow
n

bo
tt
om
Up

normalize

With these, we define normal-forms like βη-normal-form

def BENF = normalize(betaReduction <+ etaReduction)

59

CASE STUDY
Implementing TVM's Scheduling Language

200x

60

CASE STUDY
Optimizing Matrix Multiplication - Baseline

RISE

ELEVATE

What to compute

How to optimize

61

CASE STUDY
Optimizing Matrix Multiplication - Baseline

RISE
clear separation

composable explicit implicit
ELEVATE

no separation

62

Optimizing Matrix Multiplication - Loop Permutation

facilitate reuse user-defined vs. built-in

ELEVATE
no clear separation of concerns

CASE STUDY

63

CASE STUDY
Optimizing Matrix Multiplication - Parallel

facilitate reuse

ELEVATE

clear separation of concerns vs. no clear separation

64

CASE STUDY
Counting Rewrite Steps and Measuring Performance

Number of successful rewrites steps

65

CASE STUDY
Counting Rewrite Steps and Measuring Performance

Number of successful rewrites steps

Performance of the generated code

65

66

67

67

BACKUP SLIDES

pad and slide are reusable!
Machine Learning - Strided Convolution

Machine Learning - Pooling

Signal Processing - Fast Fourier Transform

GPUs -
Efficient Reductions

Numerical Solvers - Multigrid Methods

STRATEGO
Comparison to Visser et. al.

Target Language: RML (Reduced ML)

Rewrite Rules (e.g., Dead Code Elimination)

2 Optimization Strategies

Our work:
● Focus on high performance
● Competitive to state-of-the-art

optimizing compilers
● Traversals + Strategy Predicates
● Normal-forms (e.g., DFNF)

From ICFP'98:

105

LOG-SCALE SPEEDUP PLOT

13

