


WHAT IS
?  

AND WHY DO WE WANT IT?



REQUIRES HIGH PERFORMANCE
FOR SCIENTIFIC APPLICATIONS

MODERN PARALLEL

PROVIDES HIGH PERFORMANCE
BUT IS HARD TO PROGRAM

HOW TO MAKE HIGH PERFORMANCE 
ACCESSIBLE TO DOMAIN SCIENTISTS?

1



HOW TO MAKE HIGH PERFORMANCE 
ACCESSIBLE TO DOMAIN SCIENTISTS?

Domain-Specific
Compiler

HIGH-LEVEL ABSTRACTIONS
FOR DOMAIN-SCIENTISTS

AUTOMATIC CODE GENERATION 
AND OPTIMIZATION
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WHY TRYING TO ACHIEVE THIS 

WHAT IS WRONG WITH THEM?
?



DOMAIN-SPECIFIC COMPILERS ARE 
NOT REUSABLE ALMOST BY DEFINITION  

Domain-Specific
Compiler

HIGH-LEVEL ABSTRACTIONS ONLY
FOR ONE PARTICULAR DOMAIN

OPTIMIZATION FOR ONE 
PARTICULAR HARDWARE 

ARCHITECTURE
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DOMAIN-SPECIFIC COMPILERS ARE 
NOT REUSABLE ALMOST BY DEFINITION  
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Domain-Specific
Compiler

QUESTION 1: HOW TO REPRESENT 
DOMAIN-SPECIFIC COMPUTATIONS?

HOW TO DESIGN A REUSABLE 
DOMAIN-SPECIFIC COMPILER?

QUESTION 2 : HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS
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HIGH-LEVEL INTERMEDIATE 
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE 
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE 
REPRESENTATIONS

HOW TO REPRESENT DOMAIN- 
SPECIFIC COMPUTATIONS?

Three approaches used in existing state-of-the-art compilers today:
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HIGH-LEVEL INTERMEDIATE 
REPRESENTATIONS

LOW-LEVEL INTERMEDIATE 
REPRESENTATIONS

HIERARCHICAL INTERMEDIATE 
REPRESENTATIONS

HOW TO REPRESENT DOMAIN- 
SPECIFIC COMPUTATIONS?

NOT REUSABLE - BUILT-IN OPERATIONS

LOSS OF DOMAIN-SPECIFIC INFORMATION

NEEDS MULTIPLE MIDDLE- & BACK-ENDS

How to define an IR for high-performance domain-specific compilation 
that can be reused across application domains and hardware 
architectures while providing multiple levels of abstraction?
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Domain-Specific
Compiler

QUESTION 1: HOW TO REPRESENT 
DOMAIN-SPECIFIC COMPUTATIONS?

HOW TO DESIGN A 
DOMAIN-SPECIFIC COMPILER?

QUESTION 2 : HOW TO ENCODE AND APPLY
DOMAIN-SPECIFIC OPTIMIZATIONS
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RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY 
DOMAIN-SPECIFIC OPTIMIZATIONS?

Three approaches used in existing state-of-the-art compilers today:
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RELYING ON LIBRARIES HEURISTIC-BASED OPTIMIZATION SCHEDULE-BASED OPTIMIZATION

HOW TO ENCODE AND APPLY 
DOMAIN-SPECIFIC OPTIMIZATIONS?

NOT EXTENSIBLE BLACK BOX 

NO CONTROL: "ONE-SIZE-FITS-ALL"

NO REUSE: BUILT-IN OPTIMIZATIONS
How can we encode and apply domain-specific optimizations for high- 
performance code generation while providing precise control and the ability to 
define custom optimizations, thus achieving a reusable optimization approach 
across application domains and hardware architectures?
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PART I: A CASE STUDY
Fireiron: A novel domain-specific compiler for GPUs that 
outperforms manually tuned high-performance libraries

 PACT'20

11



PART II:  ADDRESSING THE IR CHALLENGE
High-performance stencil computations with Lift, a 
generic IR for domain-specific computations

PART I: A CASE STUDY
Fireiron: A novel domain-specific compiler for GPUs that 
outperforms manually tuned high-performance libraries

 PACT'20

 CGO'18
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PART II:  ADDRESSING THE IR CHALLENGE
High-performance stencil computations with Lift, a 
generic IR for domain-specific computations

PART I: A CASE STUDY
Fireiron: A novel domain-specific compiler for GPUs that 
outperforms manually tuned high-performance libraries

PART III: ADDRESSING THE OPTIMIZATION CHALLENGE
Elevate: A language for expressing optimization strategies 
as compositions of generic building blocks

 PACT'20

 CGO'18

 ICFP'20
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FIREIRON: 
Domain-Specific 
Compilation for GPUs

PART I: A CASE STUDY
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FIREIRON: 
Matrix-Multiplication-Specific 
Compilation for GPUs

PART I: A CASE STUDY
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32 

Computing Matrix Multiplication

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

13



33 

State-of-the-art compilers Optimized by human experts - 
Best* implementation available today

GAP IN PERFORMANCE

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

13



34 

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as second-class concepts!
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WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as second-class concepts!

14

Matrix Multiplication:

Schedule Language 

for Expressing Optimizations
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WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as second-class concepts!

14

Matrix Multiplication:

there is no schedule for expressing data movement optimizations!



37 

WHY YET ANOTHER DOMAIN-SPECIFIC COMPILER?

Data Movements are treated as first-class concepts!
by explicitly representing them in our IR and optimizations
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GPU CODE IS HIERARCHICALLY STRUCTURED

Matrix Multiplication code 
written in (pseudo) CUDA
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GPU CODE IS HIERARCHICALLY STRUCTURED
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GPU CODE IS HIERARCHICALLY STRUCTURED

FIREIRON: 
Programmers describe hierarchical structure of both 

Computations and Data Movements 
using Specifications and Decompositions
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DECOMPOSING HIGH-PERFORMANCE KERNELS

Specifications:
Data-Structure describing the task 

performed in a specific region of code 
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DECOMPOSING HIGH-PERFORMANCE KERNELS

Specifications:
Data-Structure describing the task 

performed in a specific region of code 
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DECOMPOSING HIGH-PERFORMANCE KERNELS

Decompositions:
How to implement the current spec 
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DECOMPOSING HIGH-PERFORMANCE KERNELS

.tile .spli
t

.move .epil
og

Decompositions:
How to implement the current spec 
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DECOMPOSING HIGH-PERFORMANCE KERNELS

.tile .spli
t

.move .epil
og

Decompositions:
How to implement the current spec 

Describing the implementation strategy in Fireiron:
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DECOMPOSING HIGH-PERFORMANCE KERNELS

Data Movement 
Optimizations

Data Movement 
Optimizations
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EVALUATION

Hypothesis A: Code related to data movements makes 
up a significant fraction in high-performance kernels.
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EVALUATION

Hypothesis A: Code related to data movements makes 
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that 
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EVALUATION

Hypothesis A: Code related to data movements makes 
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that 
are applied by experts in manually-tuned code.

Hypothesis C: Fireiron-generated code achieves 
performance close to expert-tuned code

Hypothesis D: Experts can write Fireiron strategies that 
generate code which outperforms the state-of-the-art

FIREIRON

Problem: Time-intensive: Developing Fireiron required 
about nine months of full-time work

v1. Codegen
Auto-Scheduling

Supervisors

9 Months 3 Months 3 Months

9 Months9 Months
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EVALUATION

Hypothesis A: Code related to data movements makes 
up a significant fraction in high-performance kernels.

Hypothesis B: Fireiron can express optimizations that 
are applied by experts in manually-tuned code.

Hypothesis C: Fireiron-generated code achieves 
performance close to expert-tuned code

Hypothesis D: Experts can write Fireiron strategies that 
generate code which outperforms the state-of-the-art

Problem: Not easily reusable: IR & Optimizations 
specialized for matrix multiplications and GPUs

Problem: Time-intensive: Developing Fireiron required 
about nine months of full-time work

FIREIRON

33



A generic IR for 
Domain-specific computations

PART II: ADDRESSING THE IR CHALLENGE
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Domain-Specific
Compiler

The Lift approach (EST. 2015)

LIFT
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MATRIX MULTIPLICATION

REWRITE RULES
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Domain-Specific
Compiler

The Lift approach 

LIFT

works well for dense linear algebra:  ICFP'15 HLPGPU'16 CASES'16 CGO'17
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Domain-Specific
Compiler

LIFT

Lift IR is easily extensible, reusable across domains and 
provides multiple levels of abstraction

This work: demonstrating that the

(Addressing the IR challenge)

by adding support for Stencil computations
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Stencil computations in Lift? 

map(       )
reduce(    )

split(n)
join

zip

Existing Patterns: 1D STENCIL COMPUTATION

HOW TO EXPRESS THIS IN LIFT?
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Stencil computations in Lift? No Problem . . .

map(       )
reduce(    )

split(n)
join

zip

NO REUSE 

DOMAIN-SPECIFIC 

MULTIDIMENSIONAL? 
of existing patterns and rewrites

rather than generic

is it composable?

stencil

Existing Patterns:

New Pattern?

1D STENCIL COMPUTATION
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for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j += 1; j ++) {   
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;         
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }               
 B[ i ] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c

decomposing stencil computations

41



def stencil1D = fun(xs =>
    map(reduce(add, 0),
      slide(3,1,
        pad(1,1,clamp,xs))))

stencil1D.lift

slide(n,s)

pad(l,r,b)

map

pad

slide

map(       )
reduce(  )

split(n)
join

zip

expressing stencil computations

42



map2(sum, slide2(3,1, pad2(1,1,clamp,input)))
pad2 = map(pad(1,1,clamp,pad(1,1,clamp,input)))

Multidimensional stencil computations

Multidimensional Domain-specific abstractions as 
compositions of one-dimensional generic patterns

Decompose to re-compose
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map3(sum, slide3(3,1, pad3(1,1,clamp,input)))

pad3 = map(map(pad(1,1,clamp(map(pad(1,1,clamp,pad(1,1,clamp,input)))))))

Multidimensional stencil computations

Multidimensional Domain-specific abstractions as 
compositions of one-dimensional generic patterns

Decompose to re-compose
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Domain-Specific
Compiler

Supporting stencil computations ALGORITHMIC PATTERNS

LIFT

2 Patterns
pad, slide

We added:
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Domain-Specific
Compiler

Supporting stencil computations ALGORITHMIC PATTERNS

LIFT

2 Patterns
pad, slide

We added:

overlapped tiling
1 Rewrite Rule

map(f, slide(3,1,input)) 

join(map(tile ⇒ 
  map(f, slide(3,1,tile)),
    slide(u,v,input)))

u

v
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LIFT ACHIEVES PERFORMANCE COMPETITIVE TO HAND OPTIMIZED CODE

Comparison with hand-optimized codes

HIGHER IS BETTER
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Comparison with hand-optimized codes

HIGHER IS BETTER

LIFT ACHIEVES PERFORMANCE COMPETITIVE TO HAND OPTIMIZED CODE
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LIFT OUTPERFORMS STATE-OF-THE-ART OPTIMIZING COMPILERS

Comparison with Polyhedral compilation

HIGHER IS BETTER

48



ADDRESSED

Lift provides no solution here.
Exploration and auto-tuning does not scale.
Evaluation required more than 2 days!
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A Language for Describing Optimization Strategies

PART III: ADDRESSING THE OPTIMIZATION CHALLENGE



SCHEDULE-BASED COMPILATION
Decoupling Computations and Optimizations

k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

# "parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')
xo, yo, xi, yi = s[C].tile(
  C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)
s[C].parallel(xo)
x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

200x

Schedule
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k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y: 
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

# "parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')
xo, yo, xi, yi = s[C].tile(
  C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)
s[C].parallel(xo)
x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

No clear separation
 hinders reuse!

No well-defined semantics
 hinders understanding!

Optimizations are built-in
 no extensibility!

SCHEDULE-BASED COMPILATION
Decoupling Computations and Optimizations
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OUR GOALS
A Principled Way to Separate, Describe, and Apply Optimizations

52

1

2

3

4

5

Separate concerns: Computations should not be changed for expressing optimizations

Facilitate reuse: Clear separation between computations and optimizations

Enable composability: Allow user-defined abstractions composed of simple building blocks

Allow reasoning: Well-defined semantics for all provided building blocks

Be explicit: Avoid all implicit behaviour during compilation



The Functional Way
to high-performance domain-specific compilation

Functional Data-parallel Language 
for Expressing Computations

Functional Strategy Language 
for Composing Rewrite Rules

(the spiritual successor to Lift)
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ELEVATE
A Language for Describing Optimization Strategies

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
                 | Failure[P](s: Strategy[P])
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ELEVATE
A Language for Describing Optimization Strategies

A Strategy encodes a program transformation:

type Strategy[P] = P => RewriteResult[P]

A RewriteResult encodes its success or failure:

RewriteResult[P] = Success[P](p: P)
                 | Failure[P](s: Strategy[P])

def mapFusion: Strategy[Rise] = 
  (p:Rise) => p match {
    case app(app(map, f), 
         app(app(map, g), xs)) => 
      Success( map(fun(x => f(g(x))))(xs) )
    case _ => Failure( mapFusion )       
  }

mapFusion (                ) = 

Elevate
Rise

Rewrite Rules are examples for basic strategies:  map(f) ∘ map(g) = map( f∘g )
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COMBINATORS
How to Build More Powerful Strategies

Sequential Composition (;)

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) >>= ss

Left Choice (<+)

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =
fs => ss => p => fs(p) <|> ss(p)

Try

def try[P]: Strategy[P] => Strategy[P] =
s => p => (s <+ id)(p)

Repeat

def repeat[P]: Strategy[P] => Strategy[P] =
s => p => try(s ; repeat(s))(p)

based on Visser et. al. ICFP'98
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TRAVERSALS
Describing Precise Locations 

threemaps =

mapFusion (                )  ?

There are two possible locations for successfully applying the rule
56



TRAVERSALS
Describing Precise Locations 

threemaps =

body(mapFusion) (                )  

There are two possible locations for successfully applying the rule

def body: Traversal[Rise] = s => p => p match {
  case fun(x,b) => (nb => fun(x,nb) <$> s(b)
  case _ => Failure( body(s) )                }

apply s at body of function abstraction
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TRAVERSALS
Describing Precise Locations 

threemaps =

body(argument(mapFusion)) (                )  

There are two possible locations for successfully applying the rule

def argument: Traversal[Rise] = s => p => p match {
  case app(f,a) => (na => app(f,na) <$> s(a)
  case _ => Failure( argument(s) )                }

def body: Traversal[Rise] = s => p => p match {
  case fun(x,b) => (nb => fun(x,nb) <$> s(b)
  case _ => Failure( body(s) )                }

apply s at argument of function application
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NORMALIZATION
More Complex Traversals

def topDown:  Traversal[Rise] = s => p => (s <+ one(topDown(s)))(p)
def bottomUp: Traversal[Rise] = s => p => (one(topDown(s)) <+ s)(p)
...

Generic Tree Traversals...

to
pD
ow
n

bo
tt
om
Up
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NORMALIZATION
More Complex Traversals

def topDown:  Traversal[Rise] = s => p => (s <+ one(topDown(s)))(p)
def bottomUp: Traversal[Rise] = s => p => (one(topDown(s)) <+ s)(p)
...

def normalize: Traversal[Rise] = s => p => repeat(topDown(s))(p)

Generic Tree Traversals...

… and a strategy for normalization

to
pD
ow
n

bo
tt
om
Up

normalize

With these, we define normal-forms like βη-normal-form

def BENF = normalize(betaReduction <+ etaReduction)
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CASE STUDY
Implementing TVM's Scheduling Language

200x
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CASE STUDY
Optimizing Matrix Multiplication - Baseline

RISE

ELEVATE

What to compute

How to optimize
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CASE STUDY
Optimizing Matrix Multiplication - Baseline

RISE
clear separation

composable explicit implicit
ELEVATE

no separation
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Optimizing Matrix Multiplication - Loop Permutation 

facilitate reuse user-defined vs. built-in

ELEVATE
no clear separation of concerns

CASE STUDY
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CASE STUDY
Optimizing Matrix Multiplication - Parallel

facilitate reuse

ELEVATE

clear separation of concerns vs. no clear separation
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CASE STUDY
Counting Rewrite Steps and Measuring Performance

Number of successful rewrites steps
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CASE STUDY
Counting Rewrite Steps and Measuring Performance

Number of successful rewrites steps

Performance of the generated code

65



66



67



67





BACKUP SLIDES



pad and slide are reusable!
Machine Learning - Strided Convolution

Machine Learning - Pooling

Signal Processing - Fast Fourier Transform

GPUs - 
Efficient Reductions

Numerical Solvers - Multigrid Methods



STRATEGO
Comparison to Visser et. al.

Target Language: RML (Reduced ML)

Rewrite Rules (e.g., Dead Code Elimination)

2 Optimization Strategies

Our work:
● Focus on high performance
● Competitive to state-of-the-art 

optimizing compilers
● Traversals + Strategy Predicates
● Normal-forms (e.g., DFNF)

From ICFP'98:
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LOG-SCALE SPEEDUP PLOT
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